

http://www.prechin.com

使用手册

深圳普中科技有限公司

目录

第一章 硬件、面板按键、接口功能介绍

	1.1 硬作	⊧介绍······1
	1.2 按锁	建、旋钮、拨码开关功能解释
	1.3 配约	 尾图······3
第	二章 绯	扁程软件的安装、使用
	2.1 编科	异软件硬件的要求
	2.2 编程	是软件的安装与卸载
	2 2 1	编程软件的安装
	2 2 2	· 编程软件的卸载····································
	2.3 编程	软件界面介绍
	2 3 1	
	2 3 2	2 快捷工具栏····································
	2.3.3	
	2.0.0	
		2332 软元件内存监控
		2333 子程序······24
	234	
	2.4 新建	▲一个程序文件 ····································
	2.5 指令	≥的输入
	2.5.1	编程元件、竖线段、横线段的输入······25
	2.5.2	2 编程元件、竖线段、横线段的复制与粘贴
	2.53	· 列插入、行插入··································
	2.6 指令	
	2.6.1	编元件、坚线段、横线段的删除····································
	2.0.1	· 利刪除. 行刪除
	2.0.2	
	2.7 40,0	
	2.7.1	4.11/1/10/20 ////// 30 発程序
	2.9 设置	^{-//エ/} 予通讯、下载程序到学习机····································
	VAE	

http:// www.prechin.com

2.10 程序文件的保存和另存为
2.11 编程软件的退出和关闭
2.12 常用快捷键
2.13 编程注意事项
第三章 编程基础、软元件功能指令
3.1 常用编程软元件及范围
3.2 特殊辅助继电器范围
3.3 特殊辅助存储器范围
3.4 编程基础
3.4.1 PLC 概述
3.4.2 PLC 的应用领域 ······48
3.4.3 PLC 的结构和工作原理
3.4.3.1 PLC 的结构
3.4.3.2 PLC 的工作原理
3.5 基本控制指令
3.5.1 基本指令系统
3.5.1.1 逻辑运算指令
3.5.1.2 操作及逻辑处理指令
3.5.2 定时器
3.5.2.1 定时器与时间继电器62
3.5.2.2 定时器的使用
3.5.3 计数器
3.5.3.1 计数器的功能
3.5.3.2 计数器的使用
3.6.传送指令
3.6.1 BOV 传送指令
3.6.2 FMOV多点传送指令
3.6.3 BMOV 全部传送指令
3.7 顺控指令
3.7.1 STL, RET

3.8 移位指令	`
3.8.1 S	FTL 左移位
3.8.2 S	FTR 右移位 ·······73
3.9.脉冲输出	指令
3.9.1 H	PLSR带加减速的定量脉冲输出指令······73
3.9.2 H	PLSF 带加减速的可变频率定量脉冲输出指令
3.9.3 H	PWM脉宽调制指令
3.9.4 \$	SPD 脉冲频率检测指令
3.10 触点型	北较指令
3.10.1	LD>79
3.10.2	LD<79
3.10.3	LD=79
3.10.4	LD<>
3.10.5	LD<=79

3.11.数据运算指令

3.11.1	ADD 加法指令
3.11.2	SUB 减法指令
3.11.3	MUL 乘法指令
3.11.4	DIV 除法指令80
3.11.5	INC 加一指令80
3.11.6	DEC 减一指令80

第四章 应用实例

4.1	交通红绿灯
4.2	声控灯······87
4.3	互锁
4.4	顺序启动灯
4.5	自动冲水系统
4.6	液体混合自动控制系统 ····································

4.7	自动喷泉	
4.8	步进电机转速控制	

6

第二章 编程软件的安装、使用

◎ 2.1 编程软件对硬件的要求

本编程软件一般家用安装了 WindowsXP 或 WindowsWIN7 系统的电脑均可满足安装要求,暂不 支持其它系统安装,如:苹果系统、低于 WindowsXP 版本的系统等。

◎ 2.2.1 编程软件的安装

这里以 WindowsXP 系统安装进行解说,其他系统安装方法类似,首先打开光盘或到我公司网站下载 PzStar 软件。如下图名称的文件(图 2-1):

图 2-1

首先确认电脑安装了解压软件,其次安装之前最好关闭杀毒软件和其他正在运行的软件,以保 证安装的顺利进行,然后双击 PzStar 文件打开并进行安装,按照默认的路径安装,一直点确认或下 一步即可完成安装。(图 2-2,图 2-3)

安装完成后需重启一次电脑方可彻底完成安装,安装好后桌面上将出现红圈内的图标。如需打开编程软件双击图标即可打开。

图 2-4

◎ 2.2.2 编程软件的卸载

打开电脑的开始菜单——所有程序——找到 PZstart 安装文件目录所在位置如图:

图 2-5

8

然后点击卸载 PZstart,按照提示一直点击下一步即可成功卸载编程软件,如图:(图 2-6,图 2-7)

图 2-6

◎ 2.3 编程软件界面介绍

在电脑桌面上找到编程软件图标 PrStar, 然后双击鼠标打开编程软件, 然后会出现以下窗口, 如图:

图 2-8

图 2-9

正中央出现一个蓝色小窗,上面有四个标签,分别是新文件即新建一个程序文件;打开最后一次编辑的文件即打开上次最后编辑过的程序文件;打开文件即打开保存在其他位置的程序文件;打

8

深圳普中科技 PLC 学习机

开例子库即打开本软件自带的程序例子库,内容丰富多彩可直接调用多个程序进行编写运行练习, 非常实用图 2-10A,也可通过文件菜单打开程序例子库如图 2-10B;在这我们要进入软件编程界面, 故打开新文件然后跳出系统参数设置对话窗口如图 2-11A,如要使用高级语言进行编辑,则需将下 面高级语言选项前勾选,系统会自动运行高级语言编辑模块,不勾选则不运行,无法使用高级语言 编辑功能;图 2-11B 为 RS-232 通信参数设置;图 2-11C 为 CAN 总线通信参数设置。

系统参数				
PLC类型设置 PLC类型	UART设置	CAN设置	其它	
产品系列:Pz	20MR/MT	-		
硬件版本: №1	.0	-		
程序类型				
●梯形图				
○ SFC 回高级语言	function1 🕴	原码编辑模	<u> </u> 坂)	
□ 高级语言(编译生成的	Lib库)		
	Ø	确认(型)	💿 取消 (]	N)

图 2-11A

系統参数	系统参数
PLC类型设置 UART设置 CAN设置 其它 ▼ COM1(RS232)参数 PLC站号: 1 传送波特率: 57600 通讯超时值: 100 (ms) 检查位元: 偶数 ************************************	PLC类型设置 UART设置 CAN设置 其它 ▼ CAN参数 功 能: OFF 格式: 标准帧 2.0A ▼ 波特率: 250K ▼ 类型: 数据帧 ▼ CANopen 节点ID: ↓ 节点启动: NMT Master ▼ TPDO抑制: ms
COM2(RS485)参数 RS485协议: Modbus Master ▼ ★M2095=0FF 通信参数和RS232 设置一样 ★M2095=0N 通信参数使用梯形图设置的 D2450-D2452	PLC. 数据共享区自身ID2: 100 → 验收码3: 101 → 验收码4: 102 → 验收码5: 103 → Modbus Slave 自身ID3: 200 → 验收码6: 201 →

图 2-11B

PLC 类型设置即选择你所使用的 PLC 的型号,本学习机的 PLC 型号为 Pz20MR/MT,故点击产品 系列右侧箭头进行产品型号选择 Pz20MR/MT,硬件版本为 V1.0,然后点确认进入软件编程界面(图 2-12)

📕 PzStar - [Star0] - [3	主程序.∎ain]	际题栏			
文件(2) 编辑(2) 查找(3) 视	见图(V) 高级语言(C)	PLC (2) 监控/测试 (2) 选项 (0)	个性化① 帮助① 采甲栏		
			ψ $(\gamma + 1) - 1 \rightarrow 0$	📒 🔶 🕨 🔲 🕷 💹 📖 🗃 🦞	,一世一月七
P:2008/0T/VI.0 個工程 工程/// 1.0 ● 個工程 工程// 1.0 ● Main ① function1 ● Plug Main ② function1 ● Plug ● T/H ○ Sub ● T/H ○ Sub ● T/H ○ Sub ● T ○ Sub ○ ● T ○ Sub □ ● T ○ Sub □ ● T □ Sub □ ■ T □ Sub □	0001 0002 0003 0004 0005 0005 0005 0005 0005 0005	星栏 标题相 程序 编	兰菜单栏 程绘图	快捷工具栏	程序段注释栏
LDF 就绪	- Andread and A	COM1 Pz2OMR/MT/V1.0	row 1 , Col 1	2014-3-10 10:27:15 主程序.Main	

图 2-12

2.3.1 菜单栏

菜单栏下共 10 个菜单,分别是文件、编辑、查找、视图、高级语言、PLC、监控、测试、选项、 个性化、帮助等。

文件菜单如图(2-13)

文件菜单下的选项:

III I	🎬 PzStar - [Star0] - [主程序. Main]							
文件	•(F)	编辑(E)	查找(S)	视图(V)	高級语言(C)	PLC(P) 监		
D	新建	(N)				Ctrl+N		
2	打开	@)				Ctrl+O		
	保存	(<u>S</u>)				Ctrl+S		
0	另存	为(<u>A</u>)						
8	打印	(P)				Ctrl+P		
×	打印机设置(U)							
	1 C:\Program Files\Prechin\PzStar\Examples\32MT-PGIO.PSP							
	打开	例子库(匠)				1		
()	退出	Q)						

编辑	ŧ (E)	查找((S) 视图(V)
5	撤消	键入创) Ctrl+Z
~	重复	键入区) Ctrl+Y
	程序	快注释	(B)
ж	剪切	(<u>T</u>)	Ctrl+X
	复制	(C)	Ctrl+C
æ	米占贝占	(P)	Ctrl+V
	行册	除(20)	Shift+Del
	行插	入口)	Shift+Ins
	列册	除口	Ctrl+Del
	列插	入(2)	Ctrl+Ins

图 2-13

图 2-14

新建:新建一个编程文件;打开:打开其他位置的编程文件;保存:保存当前正在编辑的文件; 另存为:将当前文件重命名或新存储到其他指定位置;打印:打印当前正在编辑的程序及相关数据 到纸张上;打印设置:设置即将打印的打印机的相关参数;打开例子子库:打开本编程软件自带的 例子程序;退出:关闭本软件。

编辑菜单如图(2-14)

编辑菜单下的选项:

撤销键入:依次撤销刚才键入的编辑数据;重复键入:依次恢复刚才撤销的编辑数据;程序块 注释:将程序进行分段标注在右侧;剪切:功能和使用方法都等同于文字的剪切命令,可将程序段 内的各线段、各指令剪切后粘贴于其他位置;粘贴:功能和使用方法都等同于文字的粘贴命令,可 将程序段内的各线段、各指令剪切后粘贴于其他位置;行删除:将光标所在的横行删除;行插入: 在光标的前面插入一空行;列删除:将光标所在一格的位置删除;列插入:在光标的前面插入一个 空格位置;

查找菜单如图(2-15A;2-15B)

查找菜单下的选项:

图 2-15A

到顶: 在查找时直接转到正在编辑文件的首部的指令; 到底: 在查找时直接转到正在编辑文件 的尾部的指令; 移行到: 在查找时移动到指定的行的指令; 查找: 在查找时设置筛选条件;

视图菜单如图(2-16)

视图菜单下的选项:

键盘键入提示:提示指令的键盘快捷输入;梯形图:以梯形图形式编辑或显示;助记符:打开助记符编辑框;工具栏显示设置:在需要显示的工具栏或状态栏前面打上钩则显示该工具栏或状态 栏,不打钩则不显示该工具栏或状态栏;元件使用情况:查看已经使用了的输入、输出、时间、中间继电器等软元件的编号; 软元件注释:打开软元件列表给需要注释的软元件加注释,注释会在编辑界面对应的软元件下方显示。

图 2-16

高级菜单如图(2-17) 高级菜单下的选项:

13

图 2-18

编写函数:用高级语言(C)编写 PLC 的指令函数;生成 lib 库:生成高级语言编写的程序库(子程序);C语言简介绍:本软件常用的C语言函数指令、数据类型介绍;系统保留字:系统中未使用的函数指令、代码;打开文本编辑器:打开文本编辑窗口;

PLC 菜单如图(2-18)

PLC 菜单下的选项:

编译:将编程界面内正在编辑的内容编译成 PLC 可以识别的机器语言; 下载:将编译好的机器语言下载(传入) PLC 中;通信设置:设置电脑与 PLC 连接下载数据的通讯端口和参数;设置时钟:设置 PLC 内的时间; PLC 信息:查看 PLC 的出厂日期和固件版本;码制转换:二进制、十进制、十六进制数转换用的工具; PID 演示:动画演示 PID 指令的工作原理图形;

监控/测试菜单如图(2-19)

监控/测试菜单下的选项:

选项(0)		个性化(正)	帮助(H)		
1	系统	F10			
Ø	输出	输出复用检查 (图)			
•	客户更新包提取(C) F12				
	保存和备份 (B)				
3	特殊	插件(2)			
	语言	选择(L)	•		

图 2-20

14

开始监控: 在已经建立好通讯的前提条件下,用电脑屏幕监控查看 PLC 内部各软元件的工作情况;显示 16 位为有符号数:显示 16 位带符号的数据;软元件内存:查看 PLC 内部软元件工作情况;特殊寄存器监视:对特殊的模拟量寄存器进行数据监视的窗口; PG 高速测试界面:可设置参数的多通道高速脉冲测试界面;

选项菜单如图(2-20)

选项菜单下的选项:

系统参数设置:设置 PLC 类型,硬件版本的界面;输出复用检查:多线圈输出检查;客户更新 包提取:导入已编译的程序文件包数据;保存备份:自动保存文件间隔时间设置;特殊插件:实现 专用功能的指令插件;语言选择:编程界面显示语言选择;

个性化菜单如下图(2-21)

个性化菜单下的选项:

图 2-21

图 2-22

范围选择:指定选择范围;显示注释:打钩则在编辑界面显示注释,不打钩则不显示注释;工 程栏:打钩则在编辑界面显示工程栏,不打钩则不工程栏;梯形图颜色配置:设置梯形图各编辑内 容的显示颜色;界面风格:更换编程界面工具条颜色风格。

帮助菜单如图(1-22)

帮助菜单下的选项:

帮助主题:指令及编程软件使用说明;软件主页:我公司网站;关于 PzStar (A):本软件版本;

2.3.2 快捷工具栏

快捷工具栏包含标准工具栏、功能工具栏、补助工具栏。

标准工具栏如图(2-23)

标准工具栏下的选项:

 「★推工具栏
 「★★

 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 <t

功能工具栏 如图(2-24)

功能工具栏下的选项:

开触点软元件: ➡ 内部编程使用的软元件,静态为打开状态,有信号输入则接通,无信号输入 则断开;闭触点软元件: ➡ 内部编程使用的软元件,静态为闭合状态,有信号输入则断开,无信号 输入则接通;取上升沿信号软元件: ➡ 取信号刚刚接通时的第一个上升沿信号;取下降沿信号软元 件: ➡ 取信号刚刚断开时的下降沿信号;开触点并联软元件: ➡ 与其他触点软元件构成并联关系 的开触点软元件;闭触点并联软元件: ➡ 与其他触点软元件构成并联关系的闭触点软元件;输出线 圈软元件: ➡ 内部编程使用的软元件,向PLC外输出信号时使用的软元件;功能指令输入框: ➡ 内部编程使用的特定的编程格式,根据实际使用情况输入不同的指令符号完成特定的功能;横连接 线: ➡ 内部编程使用的横线,表示梯形图的连接关系;直连接线: ➡ 内部编程使用的横线,表示

3 设

补助工具栏如图(2-25) 补助工具栏下选项:

进制数相互转换的工具,计算器: 6 自带的计算器,帮助: 3 点击可跳出帮助文件。

2.3.3 工程栏

工程栏包含主程序(高级语言、特殊插件)、软元件注释、系统设置、元件使用情况、软元件内 存、子程序等。

工程栏如图(2-26)

工程栏下的选项:

PzStar - [Star0] - [主		_ 🗆 🔀
	: ○ ▲ ⓑ ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː	工具栏
P:200B/NT/Y1.0 電工程 理控序 重建序 Main 第 function1 Plug 第 function1 Plug 第 Kith(注释] 系统设置 一一元件使用情况 一一元件使用情况 第 公元件注释 第 公元件注释 第 公元件注释 第 公元件注释 第 公元件注释 第 公元件注释 第 公元件注释 第 公元件注释 第 公元件之の 9 - Sub_0 第 - Sub_1 1 - 2 - Sub_2 第 - Sub_6 7 - Sub_7 第 8 - Sub_8 9 - Sub_9 9 - Sub_9 10 - Sub_10 11 - Sub_11 12 - Sub_12 13 - Sub_13 14 - Sub_14 15 - Sub_13 16 - Sub_13 16 - Sub_13 17 - Sub_17 第 18 - Sub_14 15 - Sub_15 16 - Sub_13 19 - Sub_19 17 - Sub_17 18 - Sub_18 19 - Sub_19 21 - Sub_12 21 - Sub_12 21 - Sub_12 22 - Sub_22 23 - Sub_23 24 - Sub_24 25 - Sub_25 25 - Sub_25 26 - Sub_27 28 - Sub_28 20 - Sub_29	TT程栏标题栏菜单栏快捷工具栏 F程序 G005 G05 G05 <td>程序段注释栏</td>	程序段注释栏
LDF 就绪	COM1 Pr2OMR/MT/V1.0 row 1 , Col 1 2014-3-10 10:27:15 主程序. Main	

2.3.3.1 项目介绍

17

主程序:一个程序通常由主程序和子程序组成,程序的主体部分就叫主程序;高级语言:用高级语言编写指令的窗口如图(2-27);

🗑 高级语言-[C:\Program Files\Prechin\PzStar\Examples\注塑机.PLCC]	
* //**********************************	**********
2 * 名称, function1(void)	
3 *************************************	·*************************************
4 void function1(void)	
5 {	
6 INT8U j,t,r,i,e,b,aa,ii,jj;	
7	
<pre>8 for(j=0; j<5; j++)</pre>	
e e	
10 // D[1590]为16个动作的标志。D[1320+j]为5组页面设定的16个动作标志。	
11 // A=快锁 B=低压 C=高压 D=锁停 E=座进 F=射胶 G=保压 H=熔料	
12 // I=射退 J=座退 K=慢开 L=快开 M=低开 N=顶针 O=中子 P=调模	
13 if(D[1300+j]&&D[1320+j]) Y[D[1310+j]]=((D[1320+j]&D[1590])!=0)? TRUE:FALSE;	;
14 }	
15 D[657]=0;D[658]=0;	
16	
17 //* 温度报警部分 *//	
18 for(t=0; t<4; t++)	
19 {	
20 D[2153+t]=0;	//温度止常
21 $1+((D[2000+t]+D[1940+t])(D[1900+t])) D[2153+t]=1;$	//温度低
22 1 +((D [1988+ t]+ D [1928+ t])(D [2888+ t]) D [2153+ t]=2;	// 温度高
23 1+((D[2000+C]==9990) ((D[2000+C]==0)) D[2153+C]=3;	//线断
$\sum_{i=1}^{24} \frac{1}{1} \left(\sum_{i=1}^{2} \frac{309}{3} + 1 \right) = 0 \right) = \sum_{i=1}^{24} \frac{1}{1} \left(\sum_{i=1}^{24} \frac{1}{1} + 1 \right) \left(\sum_{i=$	// @ 度 开 吊 (不 皮 用 但 有 数 姑)
$\sum_{i=1}^{2} (1/0)^{i} t_{i} ^{-1} ((2/153^{i} t_{i} ^{-1})) ((2/153^{i} t_{i} ^{-3})) ^{2} (NUE: FHLSE;$	//州伸柳作鱼皮涂件
26 $17(0[21537(]7-9)$ $0[057]77;$	1 6月 1年1462年
	77 価度的线
20 /	
20 //* 温度循环报数率公 *//	
30 // Ⅲ及间初以音前以 3// 10 [655] h+·if(10[657]=6) [2141]=13·	
32 if(D[655])288) {D[656]++:D[655]=8:if(D[656])4) D[656]=8:}	
33 if(D[2153+D[656]]==1) D[2141]=2+D[656]:	//温度低
34 if(D[2153+D[656]]==2) D[2141]=8+D[656]:	//温度高
35 if(D[2153+D[656]]==3) D[2141]=15+D[656];	//线断
36	

图 2-27

特殊插件选择:为特殊用途而编写的程序,窗口如图 2-28,其中 Freeness-232.dall为串口 232 通信, Freeness-485.dall为串口 485 通信,HX711.dall为称重功能专用,具体细节说明看插件描述。

🧱 特殊插件选择 (双击列表 🔹 dll 选中)	×
☑ / 20 通认 (型)	
AIBUS. dll	~
D Freeness_232. dll	
D HX711. dll	=
□ JR301_232. d11	
C Radio+RFID. dll	
D REID 232 dll	
□ RFID_HC_232. d11	~
插件描述	
[AIBUS. dll]	^
◆通过PLC的RS485端口操作 AI系列各种仪表、模块◆	
★M2095=0FF RS485端口通信参数和RS232 设置一样	
★M2095=0N RS485端口通信参数使用梯形图设置的 D2450-D2452	=
;;读取 M5000 触发读,使用上升沿脉冲发送 M5001 读完毕	
D5000 仪表地址 D5001 要读的参数代号	
D5005 仪表返回: 测量值PV D5006 仪表返回: 給定值SV D5007 仪表返回: 输出值MV D5008 仪表返回: 报警状态	*
5	

图 2-28

软元件注释: 在对应的方框中输入注释, 在编程界面中就会显示相应的注释; 窗口如图(2-29)

14	元件使用智	祝表	
开模	元件使用	用情况表	软元件注释 关闭
115	X 接点	Y 接点	Ⅰ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
锁模	编号	使用	元件注释
10	MO	U	手动K
	MI	U	半自动K
IF BUT	M2	U	电眼自动K
1724318	M3	B	时间自动K
M10	M4	U	开模
41 Pt	M5	U	锁模
把股K	MG	П	熔胶K
M6	MZ	U	自动清料K
	MS	H	调模选择K
熔胶K	M9	U	玉射K
#16	M10	U	抽胶K
	M11	U	公模吹气K
顶进的	M12	U	母模吹气K
	M13	U	调模退K
115	M14	U	调模讲K
TELEV	M15	U	顶退K
1000512	M16	U	顶进K
M18	M17	U	润滑K
	M18	U	多次顶K
多次顶K	M19	U	入芯AK
M21	M20	U	出芯AK
	M21	U	座讲K
座进K	M22	II	座 很 K
1122	M23	U	马达K
	M24	U	由执K
₩ ພ に	M25	U	入芯BK
Cadar Cold BA	W26	U	入 芯BK
87	NOT		

图 2-29

114	元件使用	情况表								
开模	元件的	吏用情况表	软元件注	释关闭						
115	O Î	呈序做为对象	●指定	E对象程序 Ma	in -> Sub5	5 🔽				
锁模	X 接点	Y 接点	M接点	·接点 T计	时器 c 计	数器 D 署	寄存器 统计/	报表		
11 9	元件	+0	+1	+2	+3	+4	+5	+6	+7	+8
压射的	MO	手动K	半自动K	电眼自动K	时间自动K	(开模)	领权	熔胶の	自动清科K	调模选择K
	M10	抽胶K	公模吹气K	母模吹气K	调模退K	调模进长	顶退K	顶进K	润滑K	多次顶入
10	M20	出芯AK	座进K	座退K	马达K	电热K	A CBK	入芯BK	×	н
54-8XP	M30		*			-		. /		
THEOCA	M40		*		-	*	. /	-		*
116	M50	开模K	領模K	压射化	抽胶K	熔胶K	顶进K	顶退K	多次顶K	座进K
	M60	自动清料K	公模吹气K	母模吹气K	润滑K	马达K	电热K	调模选择K	调模进K	调模退K
增胶系	M70	HICAK.	入芯BK	出芯BK	手动K	半自动K	电眼自动K	时间自动K		
#16	M80		*	*	-		*			*
	M90		*		ж	*		*	*	н
I顶进K	M100	手动	自动脉冲	半自动	自动脉冲	电眼自动	自动脉冲	时间自动	*	自动
815	M110	自动条件	自动条件	安全门条件	*		安全门故障处理		*	*
	M120	M起始条件	M动作中	马达启动中	*	*	氮气功能	*	*	
J页IBK	M130	油温高	*	н	н	*	*	*	ĸ	н
	M140	急停	*	н	н	*	*		ж	н
118	M150	报警输出	报警输出		H.	*		к.	*	н
史 治雨水	M160	各类报警	*			×.	手动动作限时	*	×	
Set 100	M170	电热脉冲	电热限制	н	н		已使用	¥.	x	н
121	M180	冷启动时间到	温度正常	循环温度显示	ж	ж	*	已使用	к	н
	Contraction of the local division of the loc	statute of the second se		proceeding of the proceeding of the first state of the				a brotovil silo os bu		

系统设置:设置 PLC 的相关参数,如图 2-11A 设置界面; 软元件使用情况:查看当前已经使用的软元件情况,如图 (2-30);

2.3.3.2 软元件内存监控

软元件内存:查看软元件接通断开情况、数据设置是否正常,对位软元件进行置位或复位操作,对 字软元件进行改写数据操作,如图对 2-31A 中的程序元件进行监控,打开软元件窗口如图 2-31B

图 2-31A

X接点	*			0						
X000-X357		X 接点	Y 接点	M 接点	S 流程	T计时器	C计数器	D寄存器	D系统寄存	器 关闭
		元 件	+ 0	+ 1	+ 2	+ 3	+ 4	+	5	+ 6
XU20-X377		XO	□X0	□X1	□ X2	□ X3	X 4		X5	□ X6
~ 協力	~	X10	□X10	□X11	□X12	□X13	□X1	4 🗆	X15	□X16
	<u> </u>	X20	□X20	□X21	□X22	□ X23	X 2	4 🗆	X25	□X26
OV00-Y357		X30	□X30	□X31	□X32	□ X33	□ X3	4 🗆	X35	□X36
Y020-Y377		X40	□X40	□X41	□X42	□X43	□X4	4 🗆	X45	□X46
-		X50	□X50	□X51	□ X52	□ X53	X 5	4 🗆	X55	□X56
M接点	*	X60	□X60	□X61	□ X62	□ X63	□ X6	4 🗆	X65	□ X66
🗩 молол-мо299		X70	□X70	□X71	□ X72	□ X73	X 7	4 🗆	X75	□X76
		X100	□X100	□X101	□X102	□X103	3 🗆 X 1	04 🛛	X105	□X106
M0300-M0333		X110	□X110	□X111	□X112	□X11:	3 🗆 X1	14 🛛	X115	□X116
🔽 МОРОО-МО899		X120	□X120	□X121	□X122	□X123	3 🗆 X 1	24 🛛	X125	□X126
🛃 М0900-М1199		X130	□X130	□X131	□X132	□X133	3 🗆 X1	34 🗆	X135	□X136
C M1200-M1499		X140	□X140	□X141	□X142	□X143	3 🗆 X1	44 🛛	X145	□X146
R M1500-M1799		X150	□X150	□X151	□X152	□X153	3 🗆 X1	54 🗆	X155	□X156
M1800.M2099		X160	□X160	□X161	□X162	□X163	3 🗆 X1	64 🛛	X165	□X166
C M1000-M2033		_								1997 / S 100 - C

可以看到 X、Y、M、S、T、C、D 等软元件的标号,并且软元件前有个正方形的小框,这个小框就 是显示软元件接通与断开情况的;现在我们来接通程序中的 X0 节点,可以看见如图 2-31C 中的情况,

I	🔤 软元件内存 .						
	X接点	*	→ ×接点	● ● ▼ 接点	⊘ M 接点	S 流程 □	【3 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
	□ ×000-×357 □ ×020-×377		元件 XO	+ 0	+ 1	+ 2	+ 3
	Y接点	*	X10 X20				
	Y000-Y357		X30		□X31		□X33
	M# 5	~	X50				
	М0000-М0299	Ŷ	X60 X70				
	M0300-M0599		X100 X110	□X100 □X110	DX101	□X102 □X112	□X103 □X113
	О МОЗОО-М1199		X120 X130	□X120 □X130	□X121 □X131	□X122 □X132	□X123 □X133
	C M1200-M1499		X140	□X140	□X141	□X142	□X143

图 2-31C

X0前面的小框变成黑色,表明X0接通,同时我们转换查看Y元件如图 2-31D,

🔤 软元件内存 .											
X接点	*	→ ×接点	○ ● X 接点 Y 接点		 S 流程	[2] 计时器					
		元 件	+ 0	+ 1	+ 2	+ 3					
X020-X377		YO	■ YO	U Y1	□ ¥2	□ΥЗ					
又接占	-	¥10	□Y10	□Y11	□ ¥12	□¥13					
THEM	-	¥20	□ ¥20	□¥21	□ ¥22	□ ¥23					
Y000-Y357		¥30	□ ¥30	□ ¥31	□ ¥32	□ ¥33					
🔵 Y020-Y377		¥40	□Y40	□Y41	□ ¥42	□ ¥43					
		¥50	□ Y50	□Y51	□ ¥52	□ ¥53					
M接点	*	¥60	□ ¥60	□Y61	□ ¥62	□ ¥63					
🗖 моооо-мо299		¥70	T 112	□Y71	UY72	U17 3					
M0200.M0599		¥100	□ ¥100	□Y101	□¥102	□¥103					
		¥110	□Y110	□Y111	□¥112	□¥113					
о мосоо-моваа		¥120	□¥120	□¥121	□¥122	□¥123					
C M0900-M1199		¥130	□Y130	□¥131	□¥132	□¥133					
S M1200-M1499		¥140	□Y140	□Y141	□¥142	□Y143					
S M1500-M1799		¥150	□Y150	□¥151	□¥152	□Y153					
- M1800.M2099		¥160	□Y160	□Y161	□Y162	□Y163					

可以看见 Y0 前面的小框也变成了黑色,表明 Y0 处于接通状态;现在我们再来采用第二种监控方式 来对 X0 与 Y0 进行监控,打开菜单开始监控或直接点击 F8 键或者点击快捷工具栏上的 开始监控, 如图 2-31E 中梯形图横线颜色改变,监控图标变为红色,左下角监控灯开始闪动。

图 2-31E

这时接通 X0 可以看见如图 2-31F 中 X0 触点、Y0 输出点变为绿色,表明信号已经接通。

图 2-31F

21

下面我们回到刚才的软元件内存窗口图 2-31D,对软元件 Y2 进行置位与复位操作,将光标移到 Y2 位置,然后双击鼠标出现如图 2-31G 的窗口,然后选择置位如图 2-31H 显示,Y2 点前方框变为黑色。

图 2-31G

□ ————————————————————————————————————	● ¥ 接点	夕 M 接点	O S 流程	図 T 计时器	≝ C 计数器	D 寄存器	D系统寄存	·器 关闭
元 件	+ 0	+ 1	+ 2	+ 3	+ 4	ŧ +	5	+ 6
YO	ΠλΟ	□ ¥1	1 12	□ ¥3	ΠY	ŧ 🗆	¥5	□ ¥6
¥10	□¥10	□¥11	□ ¥12	□ ¥13	ΠY	14 🗆	¥15	□Y16
¥20	□ ¥20	□ ¥21	□ ¥22	□ ¥23	□ ¥2	24 🗆	¥25	□¥26
¥30	□¥30	□ ¥31	□ ¥32	□ ¥33	ΠY	34 🛛	¥35	□Y36
¥40	□Y40	□ ¥41	□ ¥42	□ ¥43	ΠY	44 🗆	¥45	□ ¥46
¥50	□ ¥50	□ ¥51	□ ¥52	□ ¥53	ΠY	54 🛛	¥55	🗆 ¥56
Y60	□ ¥60	□ ¥61	□ ¥62	□ ¥63	ΠYE	34 🛛	¥65	□ ¥66
¥70	□ ¥7 0	□ 171	□11 2	□ ¥73	۵Y	74 🛛	¥75	□ 176
¥100	□Y100	□¥101	□¥102	□¥10	3 🗆 Ү	104 🗆	¥105	🗆 ¥106
¥110	□¥110	□¥111	□¥112	□¥11	3 🗆 Ү	114 🗆	¥115	□Y116
¥120	□¥120	□¥121	□¥122	□ ¥12	3 🗆 Т	124 🗆	¥125	□¥126

图 2-31H

此时表示 Y0 已经接通,这时我们转换到监控窗口图 2-31I,可以看到 Y2 输出点与图 2-31F 对比已经 变为绿色,也表示已经处于接通状态。

图 2-31I

回到图 2-31J 中,将光标移到 Y2 位置,然后双击鼠标,出现与前面一样的窗口,然后选择复位,可以看到 Y2 软元件前面的小框变回了白色图图 2-31K,表示 Y2 已经断开,其他软元件的置位与复位也与此操作相同。

→ ×接点	● Y 接点	> M 接点 S) 流程	2 T 计即	」 打器	 C 计数	(器	D 寄存器		□ ■ ■ ■ 示統寄存	7器	<mark>⊗</mark> 关闭
元 件	+ 0	+ 1	+ 2		+ 3		+ 4		+ 5		+ 6	3
YO	□ YO	🗆 ¥1 🔇	¥ 2	>	□тз		U ¥4		□ ¥5	1	DYC	3
¥10	□Y10	🗆 ¥11 1	□ ¥12		Y:2	t.			X		DYI	16
¥20	□Y20	□¥21	□ ¥22									26
¥30	□ ¥30	□¥31	□ ¥32					1			∎¥3	36
¥40	□Y40	□¥41	□ ¥42					-			D۲۹	16
¥50 _	TY50	Q¥51 -	11 152			重位 (<u>S</u>)		复位(E	0		DY5	56
¥60	A KAGE TY	边纵兀	3162						/		DYC	36
¥70	DY70	□¥71	1172					~			DY	76
¥100	□Y100	□¥101	□¥102			O B	12 沙治	(N)			۵Y	106
¥110	□Y110	□¥111	□¥112			e e	^ 1H				DY	116
¥120	□Y120	□¥121	□¥122	s - 1	□¥12	3	□¥12	4	□¥12	25	DYI	126

深圳普中科技 PLC 学习机

科技改变世界 学习成就未来

→ ×接点	● ¥ 接点	✓ K </th <th> ○ ○ ○ ○ ○ ○ ○ </th> <th>3 时器</th> <th> ⊂ 计数</th> <th>器 D</th> <th>◎ 寄存器</th> <th>D系统寄存</th> <th>器 关闭</th>	 ○ ○ ○ ○ ○ ○ ○ 	3 时器	 ⊂ 计数	器 D	◎ 寄存器	D系统寄存	器 关闭
元 件	+ 0	+ 1	+ 2	+ 3		+ 4	+	5	+ 6
YO	□Y0	🗆 Ү 1	□ ¥2)	□ ¥3		□ ¥4	ΩY	5	□ ¥6
¥10	□Y10	DY11	□ ¥12	□ ¥13		□Y14	ΩY	15	□ ¥16
¥20	□ ¥20	□Y21	□ ¥22	□ ¥23		□Y24	Ωĭ	25	□ ¥26
¥30	□¥30	□X 31	□ ¥32	□¥33		□Y34	Ωĭ	35	□¥36
¥40	🗆 ¥40 💋	DY41	□ ¥42	□ ¥43		□Y44	ΩY	45	□ ¥46
Y50	口150 元六 2	1751-17	□ ¥52	□ ¥53		□Y54	ΩY	55	□ ¥56
Y60	🗆 Y60 💢 /		1 1762	□ ¥63		□ ¥64	Ωĭ	65	□ ¥66
¥70	U17 0	□Y71	□17 2	□ ¥73		□Y74	D Y	75	□ 176
¥100	□¥100	□Y101	□¥102	□ ¥103		□Y104	ΩY	105	□Y106
¥110	□¥110	□Y111	□¥112	□¥113		□Y114	Ωĭ	115	□Y116
¥120	□¥120	□¥121	□¥122	□ ¥123		□ ¥124	Ωĭ	125	□¥126

图 2-31K

2.3.3.4 子程序

子程序:打开时进入子程序编写状态如图 2-31L,子程序前面的数字即为子程序的序列号,若要调用 子程序 0 则通过软元件驱动指令[CALL S0]即可调用子程序 0。

图 2-31L

2.3.4 编程绘图及注释栏

编程绘图及注释栏下包含梯形图编程绘图区、程序段注释区,如图(2-26) 编程绘图区:编写梯形图的区域; 25

程序段注释区:显示程序段注释的区域;

◎ 2.4 新建一个程序文件

在未打开编程软件的情况下,在桌面上找到图标题,然后双击打开软件依次选择:新文件—PLC 类型选择 Pz20MR/MT—确认,完成新建文件。已经打开编程软件的情况下点击编程软件快捷工具栏

上的图标 U即可新建一个程序文件,或打开文件菜单,打开新建选项,对应 PLC 类型选择本机的 Pz20MR/MT 型号新建一个程序文件。

◎ 2.5.指令的输入

2.5.1.编程元件的输入

我们以输入以下程序段为例,学习编程软元件、指令的输入如图(2-32)

首先将光标移到编程绘图区域的起点位置,如图(1-34)

图 2-33A

光标移到起始位置的目的是让输入的软元件触点放于此位置,然后点击开触点图标 ^{▲▶},弹出如图 2-33A 窗口,或者直接输人 LD,弹出如图 2-33B 窗口,再输入空格键跳出图 2-33A, 元件的位置填写编程软元件:X0,注释处填:检测1,然后点击确认后即可成功输入如图 2-34 的开 触点软元件,用相同的方法依次输入软元件及注释就可得到如图 2-35 的程序(梯形图);

图 2-35

接下来我们输入并联开触点,把光标移到紧靠需要并联触点的软元件的正下方,如图(2-36),点击 并联开触点图标¹,或输入OR,会弹出与前面相同的输入软元件编号和注释的窗口,然后按照先 前的方法输入软元件编号、注释即可完成如图(2-37)的程序(梯形图);

26

图 2-37

下一步输入程序中的竖线段,将光标移到横线上需要插入竖线的位置,然后点击图标 Ⅰ,即可输入 竖线段,如图(2-38)

图 2-38

横线段的输入与竖线段的输入方法基本相同,将光标放在需要输入的位置然后点击 即可输入; 然后按照前面输入软元件的方法输入其他元件,功能指令的输入也大致相同,不同的是英文字母与 软元件编号之间要空格隔开,方可输入,输入时不区分大小写字母,大写小写均可输入如图(2-40)

图 2-39

2.5.2 编程元件、竖线段、横线段的复制与粘贴

当我们在编写程序文件的时候会遇到内容相同的部分,这时就可使用复制粘贴来操作,如图 (2-40)的程序内容,我们发现与前面相同,所有可以采用复制粘贴的方式来完成。

27

http:// www.prechin.com

图 2-40

选中要复制的编程元件、竖线段、横线段,然后点击鼠标右键选择复制或者使用快捷键 Ctrl+C 复制,如图(2-41)

图 2-41

将光标放于要粘贴的位置上,然后点击粘贴或使用快捷键 Ctrl+V 粘贴内容,如图(2-42)完成粘贴。

28

http://www.prechin.com

29

图 2-42

单个元件、横线段、竖线段,多个元件、横线段、竖线段的复制与粘贴方法均相同,采用相同的方 法操作即可。

2.5.3 列插入、行插入

当我们在编写程序文件的时候会遇到需要插入一行或者插入一列的情况,这时就可采用插入的 方式来操作,如图(2-43)

图 2-43

将光标放于需要插入行的下面一行,如图(2-44)然后点击左键选择插入一行,得到如图(2-45), 再按照前面的输入方法输入即可完成程序的输入。

图 2-44

http://www.prechin.com

图 2-45

列插入的方法与行插入基本相同,将光标放与需要插入列的位置上,点击插入列便可查入一个位置的列,这里与 Office 办公软件列插入指令得到的结果不同,这里只插入光标所在行的一个列的位置 (一个软元件的位置),并不是在所有行插入一列。

◎ 2.6.指令的删除

2.6.1 编程元件、竖线段、横线段的删除

我们在编写程序的时候也会遇到删除的情况,编程软元件、竖线段、横线段的删除与插入相反, 其操作方法基本一致,都是先把光标移到要删除软元件的位置,然后删除;不同的是删除不同的元 件需要使用不同的删除指令,编程软元件和横线段的删除可以采用相同的方法,先将光标移到要删 除的元件,然后使用键盘上的删除键进行删除,当然也可以点击鼠标右键使用剪切或快捷键 Ctrl+X 的方式删除;竖线段的删除是先将光标移到要删除的软元件后一个位置,然后点击编程快捷菜单中 的述 进行删除,也可以点击鼠标右键使用剪切或快捷键 Ctrl+X 删除。

2.6.2 列删除、行删除

列删除、行删除是先将光标移到要删除的列或行,然后点击鼠标右键,选择列删除或行删除指 令即可删除,不同的是列删除指令只是删除所在行一个元件的位置,并不是删除从上到下的一整列, 而行删除则是删除一整行。

◎ 2.7 软元件、程序段的注释

2.7.1 注释输入、删除

深圳普中科技 PLC 学习机

当需要注释软元件或者更改、删除注释时,将光标移到需要注释或者更改、删除注释的软元件上,然后双击鼠标,出现对话框,在对话框内输入、删除、更改注释,点确定即可完成,如图(2-45)程序段的注释也是相同的方法,将光标移动到右侧,然后用相同的方法输入或删除、更改注释即可。

高級语言(C) PLC(P) }	监控/测试 @) 选项 @)	个性化(L) 帮助(H)				
M 🕒 🗗 📕 -+ -	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$4₽ ≺ ≻ -{ }	→ Del 💂 😽	🕨 💷 🚮 🚰	🔳 🖬 🖓 📗	
X0 入 X1 检测1 检测2 X3 检测4 X4 检测5	双击要注释 -1+ 口保存这个 元件 X1 注释 检测2	¥的软元件 ^{」 对话框})〔确认] 取消	YO (输出1 [SET Y1 输出2)P	礼门机构

图 2-45

2.8.编译程序

当程序编写完成后需要传入 PLC 内部时, 就需要对程序进行编译, 将其编译成 PLC 学习机可识别的机器语言, 点击快捷工具栏图标 ジ 即可自动进行程 *编译进行中* 序编译, 编译完毕会显示 编译成功 !

2.9 设置通讯、下载程序到学习机

当程序编译成功且下载数据线已经正确连接无误,程序将自动下载到 PLC 中如图

下载	下载	下载								
→ → → → → → → → → → → → → → → → → → →	▲ 正在嫁险	● 存进度、 000								
● 秋に☆日・・・		● 与近)支: 88%								
图 2-46	图 2-47	图 2-48								
如果数据线链接不正确将会出现以下窗口,如图(2-49)										
下载										
● 连机失败!请检查通信线。										
图 2-49										

然后就需要点击快捷工具栏上的图标 ,或菜单栏 PLC 项目中的通信设置进行设置,如图 (2-50), 然后进行通信端口选择,当端口选择正确,就会如图 (2-46, 2-47, 2-48) 成功下载程序到 PLC 中。

31

图 2-50

◎ 2.10.程序文件的保存与另存为

在快捷工具栏上点击保存快捷图标进行保存,或打开菜单栏中的文件选择保存即可保存当前正 在编辑的文件;选择另存为则可以重命名和设置新的保存路径保存当前正在编辑的程序文件。

◎ 2.11 编程软件的退出和关闭

直接点击编程软件右上角的关闭图标或者文件菜单最下面的退出即可关闭编程软件。

PzStar - [C:\Program Files\Prechin\PzStar\Examples\注塑机.PSP] - [主程序.Main]									
文件 (E) 编辑 (E) 查找 (S) 视图 (Y) 高级语言 (C) PLC (E) 监控/测试 (U) 选项 (D) 个性化 (E) 帮助 (E								MU) 选项(20) 个性化(21) 帮助(24)	
D	新建	(N)					Ctrl+N	┥╁╴Ⴗ┝╶╬╪╶╲╱╶┨┋───	
2	打开	@)					Ctrl+0		
	保存	(<u>S</u>)					Ctrl+S		
ø	另存	为(A).							
8	打印	(P)					Ctrl+P		
×	打印	机设置 (1)	i					一程序另存为	
	1 C:\Documents and Settings\Administrator\桌面\例子\自动喷泉.PSP								
] 打开例子库 (2)								
	● 退米@							l	
1 Sub_1 2 Sub_2 3 Sub_3 3 Sub_3 4 Sub_4 5 Sub_5 6 Sub_6 7 Sub_7 99 Sub_9 10 Sub_10 0007									

◎ 2.12 常用快捷键

- Ctrl+N: 新建文件
- Ctrl+O: 打开文件
- Ctrl+P: 打印
- Ctrl+Z: 撤销键入
- Ctrl+Y: 重复键入
- Ctrl+X: 剪切
- Ctrl+C: 复制
- Ctrl+V: 粘贴
- Ctrl+Del: 行删除
- Ctrl+Ins: 行插入
- Ctrl+Home: 回到程序顶端
- Ctrl+End: 回到程序底端
- Shift+Del: 列删除
- Shift+Ins: 列插入
- Shift+F2: 打开 PLC 信息
- Shift+F3: 打开码制转换工具
- Shift+F4: 打开 PID 演示窗口
- Shift+F9: 打开特殊寄存器监控窗口
- Shift+F10: 高速通道测试
- Alt+O: 隐藏或打开工程栏
- F1: 打开帮助窗口
- F3: 打开查找窗口
- F4: 打开软元件使用注释表
- F5: 编译程序
- F6: 下载程序到 PLC
- F7: 打开设置 PLC 时钟窗口
- F8: 打开程序监控窗口
- F9: 打开软元件内存对话窗
- F10: 打开系统设置对话窗

34

F11: 打开输出复用检测窗口

F12: 客户更新包提取或打开例子程序库

◎ 2.13 编程注意事项

2.13.1 双层并联的转换

如图 2-51B 为双层并联梯形图需经过简单变换成图 2-51C 才可通过编译。

图 2-51C

2.13.2 多层并联的转换: 编程过程中可能会遇到以下如图 2-52 所示的多层并联的梯形图,多层并联 梯形图是无法通过编译的,要通过编译需要对梯形图做适当的变换,变换为单层并联的梯形图如图 2-53,便可通过编译,其他多层的梯形图变换方式与此相同。

图 2-52

http:// www.prechin.com

图 2-53

2.13.3 复杂梯形图的变换

如图 2-54 的复杂梯形图不但表示的输入、输出逻辑关系比较复杂,且无法通过编译。故需要 通过变换将其输入、输出逻辑关系一目了然,并且通过编译,变换后如图 2-55 所示。

图 2-54

http:// www.prechin.com

36
2.13.4 输出双线圈的变换

如图 2-56 为双线圈输出,双线圈输出指的就是输出线圈有两个或以上编号相同,双线圈在编程中是 不允许存在的,存在双线圈的梯形图软元件位置排在最后面一个的起效,位置排在前面的线圈将不 被接通,因此双线圈在编程中是不允许存在的,双线圈的存在会使逻辑运算变的复杂,导致系统出 错而无法正常工作,故当出现双线圈的梯形图时要将其变换为单线圈图 2-57。

深圳普中科技 PLC 学习机

在步进状态转移梯形图中是允许非并行分支、不在主母线或同一状态母线且不相邻的状态间使用双线圈输出的,如图 2-58 中,第一个 Y1、Y5 与第二个 Y1、Y5 不同时接通,所以就不存在同时输出的情况,故可以使用双线圈。

科技改变世界 学习成就未来

触点软元件可串联无限制,且使用次数不受限制,可使用多次。

2.13.6 触点多排在上面

如图 2-59A 要将触点多的线放在上面,优化为图 2-59B

图 2-59B

如图 2-60A 中的梯形图,要将其优化变换为图 2-60B 的形式程序执行才更快。

http://www.prechin.com

第三章 编程软元件功能指令

◎ 3.1.常用编程软元件及范围

本机的编程软元件编号见下图表(3-1)

识别	勾标	范围			点数		
记号	石小	20	32	36	20	32	36
Х		X0~X7	NO N17	X0~X17	12	16	20
		X10~X13	$\mathbf{X}0^{\prime} \sim \mathbf{X}1^{\prime}$	X20~X23			20
V	检山占	$\mathbf{V}0 \sim \mathbf{V}07$	Y0~Y17	Y0~Y17	o	16	16
I	扣 山.只	10, ~10/		Y20~Y22	8		10
м	山如州山思	M0~M5119			5120		
101	闪的浓石型	特殊用 M2000~M	2299			300	
S	流程	S0~S119				200	
т	定时器	T0~T234 100ms (0.1 秒 235 点)			- 400		
1		T235~T399 10ms (0.01 秒 165 点)					
С	计数器	C0~C119 16位正		200			
		D0~-D5119				5120	
		D0~D49			50		
		EEPROM 保存由 PLC 面板修改的数据					
		D50~D85		36			
D	数据寄存器	电池实时保存寄存器(PLC 面板可修改区域)					
	D500~D1299						
		标准[EEPROM 保存由上位机修改的数据]				800	
		定制[FRAM 实时保存	存寄存器]				
		特殊用 D2000~D2	2599			600	

图 3-1

注: 输入线圈、输出继电器的编号为八进制数,其它存储器的编号均为十进制数,没有与外设实连的 I/0 可作为快速内部继电器使用。

◎ 3.2 特殊辅助继电器范围

本机的特殊辅助继电器编号见下图表(3-2)

特殊辅助继电器列表[代号 M2000~M2099]适用机型普中 PLC 系列

代号	M2000	RUN 监视常闭触点
代号	M2001	RUN 监视常开触点
代号	M2002	初始脉冲
代号	M2010	10ms 时钟 (以10毫秒的频率周期振荡)
代号	M2011	20ms 时钟 (以20毫秒的频率周期振荡)
代号	M2012	100ms 时钟 (以100毫秒的频率周期振荡)
代号	M2013	200ms 时钟(以200毫秒的频率周期振荡)
代号	M2014	1 秒时钟 (以1秒的频率周期振荡)
代号	M2015	2 秒时钟 (以2秒的频率周期振荡)
代号	M2016	ON : CAN 链接共享区域数据
代号	M2020	温控输出触点 KTO
代号	M2021	温控输出触点 KT1
代号	M2022	温控输出触点 KT2
代号	M2023	温控输出触点 KT3
代号	M2024	温控输出触点 KT4
代号	M2025	温控输出触点 KT5
代号	M2026	温控输出触点 E1KTO (外部 CAN_bus 扩展)
代号	M2027	温控输出触点 E1KT1 (外部 CAN_bus 扩展)
代号	M2028	温控输出触点 E1KT2 (外部 CAN_bus 扩展)
代号	M2029	温控输出触点 E1KT3 (外部 CAN_bus 扩展)
代号	M2030	温控输出触点 E1KT4 (外部 CAN_bus 扩展)
代号	M2031	温控输出触点 E1KT5 (外部 CAN_bus 扩展)
代号	M2032	温控输出触点 E1KT6 (外部 CAN_bus 扩展)
代号	M2033	温控输出触点 E1KT7 (外部 CAN_bus 扩展)
代号	M2034	温控输出触点 E1KT8 (外部 CAN_bus 扩展)
代号	M2035	温控输出触点 E1KT9 (外部 CAN_bus 扩展)
代号	M2036	温控输出触点 E1KT10(外部 CAN_bus 扩展)
代号	M2037	温控输出触点 E1KT11(外部 CAN_bus 扩展)
代号	M2038	温控输出触点 E2KTO (外部 CAN_bus 扩展)
代号	M2039	温控输出触点 E2KT1 (外部 CAN_bus 扩展)
代号	M2040	温控输出触点 E2KT2 (外部 CAN_bus 扩展)
代号	M2041	温控输出触点 E2KT3 (外部 CAN_bus 扩展)
代号	M2042	温控输出触点 E2KT4 (外部 CAN_bus 扩展)
代号	M2043	温控输出触点 E2KT5 (外部 CAN_bus 扩展)

代号	M2044	温控输出触点 E2KT6 (外部 CAN_bus 扩展)
代号	M2045	温控输出触点 E2KT7 (外部 CAN_bus 扩展)
代号	M2046	温控输出触点 E2KT8 (外部 CAN_bus 扩展)
代号	M2047	温控输出触点 E2KT9 (外部 CAN_bus 扩展)
代号	M2048	温控输出触点 E2KT10(外部 CAN_bus 扩展)
代号	M2049	温控输出触点 E2KT11(外部 CAN_bus 扩展)
代号	M2070	编码器 0 的增量值归零(请使用上升沿脉冲信号控制)
代号	M2071	编码器 1 的增量值归零(请使用上升沿脉冲信号控制)
代号	M2072	编码器 2 的增量值归零(请使用上升沿脉冲信号控制)
代号	M2073	编码器 3 的增量值归零(请使用上升沿脉冲信号控制)
代号	M2075	PG 模式下 Y20 模式 (OFF=PLSR、PLSF 输出/ON 开关输出)
代号	M2076	PG 模式下 Y21 模式 (OFF=PLSR、PLSF 输出/ON 开关输出)
代号	M2077	PG 模式下 Y22 模式 (OFF=PLSR、PLSF 输出/ON 开关输出)
代号	M2090	LCD. 寄存器显示. 高位补 "0"
代号	M2091	LCD. 寄存器显示. 对齐方式
代号	M2092	
代号	M2093	LCD. 背光控制
代号	M2094	ON : PLC 面板 KO-K4 接通外部 X10-X14
		OFF: X370-X374 同步 K0-K4
代号	M2095	RS485. MODBUS 通信开启
代号	M2096	RS485. MODBUS 送信请求
代号	M2097	RS485. MODBUS 送信完毕/写入成功
代号	M2098	RS485. MODBUS 接收超时/写入失败

图 3-2

◎ 3.3.特殊辅助存储器范围

本机的特殊辅助存储器编号见下图表(3-3) 特殊辅助寄存器列表[代号 D2000~D2599]适用机型普中 PLC 系列

代号	D90	系统 RTC. 时分
代号	D91	系统 RTC. 月日
代号	D92	系统 RTC. 年
代号	D93	数码管.显示值(0~9999=正常数值、10000~10099=A-00~A-99;20000~
20099=	B-00 \sim B-	-99; 30000 \sim 30099=C-00 \sim C-99; 40000-40099=D-00 \sim D-99; 50000-50099=E-00 \sim
E-99;6	0000-6009	$99 = F - 00 \sim F - 99$)

科技改变世界 学习成就未来

代号	D94	
代号	D95	
	000	
代号	D96	系统密码设置(≠0时则由D97分配系统区域)
代号	D97	系统起始 ID (5., D2098)
代号	D98	DA1模拟输出增益微调 20~120%
代号	D99	DA2模拟输出增益微调 20~120%
代号	D100	DA3模拟输出增益微调 20~120%
代号	D101	DA4模拟输出增益微调 20~120%
代号	D2090	产品出厂日期.年
代号	D2091	产品出厂日期.月
代号	D2092	产品型号代码
代号	D2095	FRAM 写计数
代号	D2096	系统进入设定状态
代号	D2097	当前修改的 ID 号
代号	D2098	数码管.可修改寄存器范围(0~99)
代号	D2099	蜂鸣器报警标志(0-0FF=0-0N)
代号	D2000	AD温度检测值 KO
代号	D2001	AD 温度检测值 K1
代号	D2002	AD 温度检测值 K2
代号	D2003	AD 温度检测值 K3
代号	D2004	AD 温度检测值 K4
代号	D2005	AD 温度检测值 K5
代号	D2006	AD 温度检测值 K6
代号	D2007	AD 温度检测值 E1K0 (外部 CAN_bus 扩展)
代号	D2008	AD 温度检测值 E1K1 (外部 CAN_bus 扩展)
代号	D2009	AD 温度检测值 E1K2 (外部 CAN_bus 扩展)
代号	D2010	AD 温度检测值 E1K3 (外部 CAN_bus 扩展)
代号	D2011	AD 温度检测值 E1K4 (外部 CAN_bus 扩展)
代号	D2012	AD 温度检测值 E1K5 (外部 CAN_bus 扩展)
代号	D2013	AD 温度检测值 E1K6 (外部 CAN_bus 扩展)
代号	D2014	AD 温度检测值 E1K7 (外部 CAN_bus 扩展)
代号	D2015	AD 温度检测值 E1K8 (外部 CAN_bus 扩展)
代号	D2016	AD 温度检测值 E1K9 (外部 CAN_bus 扩展)
代号	D2017	AD 温度检测值 E1K10 (外部 CAN_bus 扩展)
代号	D2018	AD 温度检测值 E1K11 (外部 CAN_bus 扩展)
代号	D2021	AD 温度检测值 E2K0 (外部 CAN_bus 扩展)
代号	D2022	AD 温度检测值 E2K1 (外部 CAN_bus 扩展)
代号	D2023	AD 温度检测值 E2K2 (外部 CAN_bus 扩展)

科技改变世界 学习成就未来

代	号	D2024	AD 温度检测值 E2K3 (外部 CAN_bus 扩展)
代	号	D2025	AD 温度检测值 E2K4 (外部 CAN_bus 扩展)
代	号	D2026	AD 温度检测值 E2K5 (外部 CAN_bus 扩展)
代	号	D2027	AD 温度检测值 E2K6 (外部 CAN_bus 扩展)
代	号	D2028	AD 温度检测值 E2K7 (外部 CAN_bus 扩展)
代	号	D2029	AD 温度检测值 E2K8 (外部 CAN_bus 扩展)
代	号	D2030	AD 温度检测值 E2K9 (外部 CAN_bus 扩展)
代	号	D2031	AD 温度检测值 E2K10 (外部 CAN_bus 扩展)
代	号	D2032	AD 温度检测值 E2K11 (外部 CAN_bus 扩展)
AD	模拟量	量输入	
代	号	D2040	AD电子尺/压力传感器检测值 AD1(12bit)
代	号	D2041	AD电子尺/压力传感器检测值 AD2(12bit)
代	号	D2042	AD 电子尺/压力传感器检测值 AD3(12bit)
代	号	D2043	AD 电子尺/压力传感器检测值 AD4(12bit)
代	号	D2044	AD电子尺/压力传感器检测值 AD5(12bit)
代	号	D2045	AD电子尺/压力传感器检测值 AD6(12bit)
代	号	D2052	AD 称重传感器检测值 AD10(24bit)
代	号	D2054	AD 称重传感器检测值 AD11(24bit)
代	号	D2056	AD 称重传感器检测值 AD12(24bit)
代	号	D2058	AD 称重传感器检测值 AD13(24bit)
DA	模拟量	量输出	
代	号	D2060	DA[0-10V]输出值 DA1
代	号	D2061	DA[0-10V]输出值 DA2
代	号	D2062	DA[0-10V]输出值 DA3
代	号	D2063	DA[0-10V]输出值 DA4
代	号	D2066	PWM 比例周期(15)
通	信计数	器、CAN共	<u>字</u>
代	号	D2190	CAN(D2190=0,使用工程设置自身 ID2, ≠0 使用本寄存器设置自身 ID2)
代	号	D2191	CAN(D2191=0,使用工程设置自身 ID3, ≠0 使用本寄存器设置自身 ID3)
代	号	D2192	CAN(CAN_bus 接收计数)
代	号	D2193	CAN(CAN_bus 发送计数)
代	<u>号</u>	D2196	COM1 (RS232通信计数)
代	号	D2197	COM2(RS485.通信计数)
化	문	02200 פת	
	J	<u> </u>	1200 派2010 01. 月 01. 20 33 泊八子巴秀 [马丁侠坦为马及门庆司床扑]
编码	码器		

科技改变世界 学习成就未来

深圳普中科技 PLC 学习机

代号	D2300	编码器0的增量值(32bit 掉电保存)
代号	D2302	编码器1的增量值(32bit 掉电保存)
代号	D2304	编码器2的增量值(32bit 掉电保存)
代号	D2306	编码器3的增量值(32bit 掉电保存)
代号	D2308	编码器倍频选择 (0=4倍频、1=2倍频、2=无倍频)
代号	D2310	外中断 0-3 进入标志
输出/输	ì 入转移	
代号	D2320	输出转移 IN 数据 1
代号	D2321	输出转移 OUT 数据 1
代号	D2322	输出转移 0N/0FF 1
代号	D2323	输出转移 IN 数据 2
代号	D2324	输出转移 OUT 数据 2
代号	D2325	输出转移 ON/OFF 2
代号	D2326	输出转移 IN 数据 3
代号	D2327	输出转移 OUT 数据 3
代号	D2328	输出转移 ON/OFF 3
代号	D2329	输出转移 IN 数据 4
代号	D2330	输出转移 OUT 数据 4
代号	D2331	输出转移 ON/OFF 4
代号	D2332	输入转移 IN 数据 1
代号	D2333	输入转移 OUT 数据 1
代号	D2334	输入转移 ON/OFF 1
代号	D2335	输入转移 IN 数据 2
代号	D2336	输入转移 OUT 数据 2
代号	D2337	输入转移 ON/OFF 2
代号	D2338	输入转移 IN 数据 3
代号	D2339	输入转移 OUT 数据 3
代号	D2340	输入转移 ON/OFF 3
代号	D2341	输入转移 IN 数据 4
代号	D2342	输入转移 OUT 数据 4
代号	D2343	输入转移 ON/OFF 4
	DM2通信参数	
代号	D2450	COM2/RS485 波特率设置(0=4800bps、1=9600bps、2=19200bps、3=38400bps、
4=57600)bps)	
代号	D2451	COM2/RS485 奇偶校验位(0=无:8 N 2、1=奇数:8 0 1、2=偶数8 E 1、3=

http://www.prechin.com

无:8 N 1)	
代号	D2452	COM2/RS485 通信超时值(单位 ms)
代号	D2455	COM1/RS232(D2455=0,使用工程设置站号, ≠0 使用本寄存器设置站号)
代号	D2456	COM2/RS485(D2456=0,使用工程设置站号, ≠0 使用本寄存器设置站号)
代号	D2460D2475	COM2/RS485 读取数据的储存区域
代号	D2480D2495	COM2/RS485 写数值的存放区域

图 3-3

◎ 3.4.编程基础、软元件功能指令

3.4.1.PLC 概述

PLC 的分类及特点

可编程控制器简称 PLC,在 1987 年国际电工委员会颁布的 PLC 标准草案中对 PLC 做了如下 定义: PLC 是—种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程 序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令, 并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程,PLC 及其有关的外围设 备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

按产地分:可分为日系、欧笑、韩台、大陆等。其中日系具有代表性的为三菱、欧姆龙、松下、 光洋等:欧系列具有代表性的为西门子、AB、通用电气、德州仪表等;韩台系列具有代表性的LG…、 台达等:大陆系列具有代表性的为合利时、浙江中控等。

按点数分:可分为大型机、中型机及小型机等。大型机一般 1/0 点数〉2048 点:具有多 CPU 16 位/32 位处理器,用户存储器容量 8~16K,具有代表性的为西门子 S7-400 系列、通用公司的 GE-IV 系列等:中型机一般 I/O 点数为 256~2048 点:单双 CPU 用户存储器容量 2~8K,具有代表性的为 西门子 S7-300 系列、三菱 Q 系列等:小型机一般 I/O 点数〈256 点,单 CPU,8 位或 16 位处理器, 用户存储器容量 4K 以下,具有代表性的为西门子 S7-200 系列、三菱 FX 系列等。

按结构分:可分为整体式和模块式。整体式 PLC 是将电源、CPU、I/O 接口等部件都集中装 在一个机箱内,具有结构紧凑、体积小、价格低的特点:小型 PLC-般采用这种整体式结构。模块 式 PLC 由不同 I/O 点数的基本单元(又称主机)和扩展单元组成。基本单元内有 CPU、I/O 接口与 I/O 扩展单元相连的扩展口,以及与编裎器或 EPROM 写入器相连的接口等:扩展单元内只有 I/O 和 电源等,没有 CPU,基本单元和扩展单元之间一般用扁平电缆连接,整体式 PLC 一般还可配备特殊

科技改变世界 学习成就未来

功能单元,如模拟量单元、位置控制单元等,使其功能得以扩展。这种模块式 PLC 的特点是配置灵活,可根据需要选配不同规模的系统,而且装配方便,便于扩展和维修。大、中型 PLC 一般采用模块式结构。还有一些 PLC 将整体式和模块式的特点结合起来,构成所谓叠装式 PLC。

按功能分:可分为低档、中档、高档三类。低档 PLC 具有逻辑运算、定时、计数、移位以及自 诊断、监控等基本功能:还可有少量模拟量输入 7 输出、算术运算、数据传送和比较、通信等功能: 主要用于逻辑控制、顺序控制或少量模拟量控制的单机控制系统。中档 PLC 除具有低档 PLC 的功能 外,还具有较强的模拟里输入输出、算术运算、数据传送和比较、数制转换、远程 I/O、子程序、通 信联网等功能;有些还可增设中断控制、PID 控制等功能,适用于复杂控制系统。高档 PLC 除具有 中档机的功能外,还增加了带符号算术运算、矩阵运算、位逻辑运算、平方根运算及其它特殊功能 函数的运算、制表及表格传送功能等,高档 PLC 机具有史强的通信联网功能,可用于大规模过程控 制或构成分布式网络控制系统,实现工厂自动化。

PLC 的特点

1.可靠性高,抗干扰能力强

高可靠性是电气控制设备的关键性能。PLC 由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。一些使用冗余 CPU 的 PLC 的平均无故降工作时间则吏长。从 PLC 的外电路来说,使用 PLC 构成控制系统,和同等规模的继电器系统相比,电气接线及开关接点己减少到数百甚至数千分之一,故障也就大大降低。此外,PLC 带有硬件故降自我检测功能,出现故障时可及时发出报警信息。在应用软件中,应用者还可以编入外围器件的故降自诊断程序,使系统中除 PLC 以外的电路及设备也获得故降自诊断保护。这样,整个系统具有极高的可靠性和稳定性。

2.配置丰富,功能齐全,适用性强

PLC 发展到今夭,已经形成了大、中、小各种规模的系列化产品。可以用于各种情况的工业控制场合。除了逻辑处理功能以外,现代 PLC 大多具有完善的数据运算能力,可用于各种数字控制领域。近年来 PLC 的功能单元大里涌现,使 PLC 滲透到了位置控制、温度控制、CNC 等各种工业控制中。加上 PLC 通信能力的增强及人机界面技术的发展.使用 PLC 组成各种控制系统变得非常容易。 3.易学易用

PLC 作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用 PLC 的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

4.系统的设计、设计工作量小,维护方便,容易修改

PLC 用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能,这很适合多品种、小批量的生产场合。

5.体积小,重量轻,能耗低

以超小型 PLC 为例,新近出产的品种底部尺寸小于 100mm,重量小于 150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。

3.4.2.PLC 的应用领域

目前 PLC 在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。

1.开关量的逻辑控制

这是 PLC 最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制, 既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组 合机床、磨床、包装生产线、电镀流水线等。

2.模拟量控制

在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。 为了使可编程控制器处理模拟量,必须实现模拟量和数字量之间的 A/D 转换和 D/A 转换,PLC 厂 家都生产配套的 D/A 和 A/D 转换模块,使可编程控制器用于模拟量控制。

3.运动控制

PLC 可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量 I/O 模 块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机 的单轴或多轴位置控制模块。世界上各主要 PLC 厂家的产品几乎都有运动控制功能,广泛用于各种 机械、机床、机器人、电梯等场合。

4.过程控制

过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC 能编制各种各样的控制算法程序,完成闭环控制。PID 调节是一般闭环控制系统中用得较多的调节方法。大中型 PLC 都有 PID 模块,目前许多小型 PLC 也具有此功能模块。PID 处理一般是运行专用的 PID 子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

5.数据处理

现代 PLC 具有数学运算〔含矩阵运算、函数运算、逻辑运算〉、数据传送、数据转换、排序、

科技改变世界 学习成就未来

查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考 值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数 据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶 金、食品工业中的一些大型控制系统。

6.通信及联网

PLC 通信含 PLC 间的通信及 PLC 与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各 PLC 厂商都十分重视 PLC 的通信功能,纷纷推出各自的网络系统。新近生产的 PLC 都具有通信接口,通信非常方便。

3.4.3.PLC 的结构和工作原理

3.4.3.1PLC 的结构

PLC 的类型繁多,功能和指令系统也不尽相同,但结构与工作原理则大同小异,通常由主机、 输入7输出接口、电源、编程器扩展器接口和外部设备接口等几个主要部分组成。

图 3-4

1.主机

主机部分包括中央处理器 CPU、系统程序存储器和用户程序及数据存储器。CPU 是 PLC 的核心, 它用以运行用户程序、监控输入/输出接口状态、作出逻辑判断和进行数据处理,即读取输入变量完 成用户指令规定的各种操作,将结果送到输出端,并响应外部设备(如编程器、电脑、打印机等) 的请求以及进行各种内部判断等。PLC 的内部存储器有两类,一类是系统程序存储器,主要存放系 统管理和监控程序及对用户程序作编译处理的程序,系统程序己由厂家固定,用户不能更改;另一 类是用户程序及数据存储器,主要存放用户编制的应用程序及各种暂存数据和中间结果。

2.输入/输出 I/0 接口

I/O 接口是 PLC 与输入/输出设备连接的部件。输入接口接受输入设备(如按钮、传感器、触点、 行程开关等)的控制信号。输出接口是将主机经处理后的结果通过功放电路去驱动输出设备(如接 触器、电磁阀、指示灯等)。I/O 接口一般采用光电耦合电路,以减少电磁干扰,从而提高了可靠性。 I/O 点数即输入/输出端子数是 PLC 的一项主要技术指标,通常小型机有几十个点,中型机有几百个 点,大型机将超过千点。

3.电源

50

图(3-4)中电源是指为 CPU、存储器、I/O 接口等内部电子电路工作所配置的直流开关稳压电源,通常也为输入设备提供直流电源。

4.编程器

编程器是 PLC 的一种主要的外部设备,用于手持编程,用户可用以输入、检查、修改、调试程 序或监示 PLC 的工作情况。除手持编程器外,还可通过适配器和专用电缆线将 PLC 与电脑联接,并 利用专用的工具软件进行电脑编程和监控。

5. 输入输出扩展单元

I/O 扩展接口用于连接扩充外部输入/输出端子数的扩展单元与基本单元(即主机)。

6.外部设备接口

此接口可将编程器、打印机、条码扫描仪等外部设备与主机相联,以完成相应的操作。

3.4.3.2.PLC 的工作原理

PLC 是采用"顺序扫描,不断循环"的方式进行工作的。即在 PLC 运行时,CPU 根据用户按 控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描,如无 跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束。然后重新返回第一条指令, 开始下一轮新的扫描。在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。

PLC 扫描一个周期必经输入采样、程序执行和输出刷新三个阶段。

PLC 在输入采样阶段: 首先以扫描方式按顺序将所有暂存在输入锁存器中的输入端子的通断 状态或输入数据读入,并将其写入各对应的输入状态寄存器中,即刷新输入。随即关闭输入端口, 进入程序执行阶段。

PLC 在程序执行阶段:按用户程序指令存放的先后顺序扫描执行每条指令,执行的结果再写 入输出状态寄存器中,输出状态寄存器中所有的内容随着程序的执行而改变。

输出刷新阶段:当所有指令执行完毕,输出状态寄存器的通断状态在输出刷新阶段送至输出 锁存器中,并通过一定的方式(继电器、晶体管或晶闸管)输出,驱动相应输出设备工作。

http://www.prechin.com

◎ 3.5.PLC 的基本控制指令

基本指令系统分两部分:一部分是基本逻辑运算及输出指令,包括取、与、或及它们的反运算、 置位、复位和输出指令。这些指令是 PLC 的基本逻辑指令,加上定时器和计数器的综合应用,基本 上可以实现继电器控制系统的程序编制。在程序中,这部分指令用触点、线圈及连线可以很方便的 在梯形图中表示。另一部分是逻辑处理指令。这些指令在程序并不表示一定的逻辑运算,而是对复 杂逻辑运算的处理,它包括电路块、堆栈、主控操作、边沿处理指令等。

3.5.1.逻辑运算指令

助记符	名称	功能	梯形图表示 可用软元件	程序步
LD	取	常开触点运算开始		1
LDI	取反	常闭触点运算开始	LDI X. Y. M S. T. C	1
OUT	输出	线圈驱动	Y. M. S T. C	Y, M: 1 特M: 2 T: 3 C: 3-5
END	结束	程序结束,返回开始	END 无	1

1.逻辑取、输出及结束指令

图 3-5

(1) LD 取指令:表示一个与输入母线相连的动合接点指令,即动合接点逻辑运算起始。LDI 取 反指令:表示一个与输入母线相连的动断接点指令,即动断接点逻辑运算起始。OUT 线圈驱动指令, 也叫输出指令。LD 、LDI 两条指令的目标元件是 X、Y、M、S、T、C,用于将接点接到母线上。 也可以与后述的 ANB 指令 、ORB 指令配合使用,在分支起点也可使用。OUT 是驱动线圈的输出 指令,它的目标元件是 Y、M、S、T、C,对输入继电器不能使用。OUT 指令可以连续使用多次。 LD、LDI 是一个程序步指令,这里的一个程序步即是一个字。OUT 是多程序步指令,要视目标元件 而定。OUT 指令的目标元件是定时器和计数器时,必须设置常数 K。

编程规则:梯形图中,每一梯级的第一个触点必须用取指令 LD (常开〉或取反指令 LDI(常闭〉, 并与左母线相连。LD; LDI 指令也可用在电路块的第一个触点上,也可用在主控指令的子母线相连 的触点上,如何用法,这在指令语句表程序设计中是必须要熟练掌握的。如果用的不恰当,编译时 会出错。但在使用编程软件编辑梯形图程序时,由于可以用快捷键或快捷图标输入,可以根本不考 虑在什么情况下用取指令 LD; LDI,当梯形图被切换成指令语句表程序时,会自动安排取指令的使

用。类似这样的情况还有电路块指令和堆栈指令等。

(2) OUT 指令为继电器线圈驱动指令。将线圈前的逻辑运算结果输出到指定的中间继电器或输出继电器,使其触点产生相应的动作。逻辑运算结果为1时,软元件继电器闭合,表现为外部对应编号接线端子信号接通;逻辑运算结果为0时,继电器不闭合,表现为外部对应编号的端子信号不接通。

(3) END 指令为程序结束指令,表示程序结束,返回起始地址。在调试程序时可利用指令进行 分段调试。

图 3-6 为梯形图与指令助记符的对应关系

图 3-6

2.触点串、并联指令

助记符	名称	功能	梯形图表示 可用软元件	程序步
AND	与	串接常开触点	AND X. Y. M S. T. C	1
ANI	与反	串接 常闭触点	ANI X.Y.M S.T.C	1
OR	或	并接常开触点	X.Y.M S.T.C	1
ORI	或反	并接常闭触点		1

图 3-7

(1) 接点串联指令 AND、ANI

AND 与指令,为常开触点串联连接,进行逻辑"与"运算,用于单个动合接点的串联。ANI 与非指令,为常闭触点串联连接,进行逻辑"与"运算,用于单个动断接点的串联。AND 与 ANI

深圳普中科技 PLC 学习机

科技改变世界 学习成就未来

53

都是一个程序步指令,它们串联接点的个数没有限制,也就是说这两条指令可以多次重复使用。这 两条指令的目标元件为 X、Y、M、S、T、C;OUT 指令后,通过接点对其它线圈使用 OUT 指令称 为纵输出或连续输出,这种连续输出如果顺序没错,可以多次重复。

图 3-8 梯形图与指令助记符的对应关系

图 3-8

(2) OR 指令为常开触点并联连接,进行逻辑"或"运算,用于单个动合接点的并联;ORI 指令为 常闭触点并联连接,进行逻辑"或"运算;用于单个动断接点的并联。OR 与 ORI 指令都是一个程 序步指令,它们的目标元件是 X、Y、M、S、T、C。这两条指令都是一个接点。如果所串联的是一 个并联电路块或并联的是一个串联电路块(见图 3-9),则不能使用串、并联指令,要用后述的电路 块指令 ANB 和 ORB 指令。

图 3-9

(3).触点串、并联指令的串联、并联的次数不受限制,可反复使用。

(4).在实际应用中,如果某些输入信号只能接入常闭开关信号,可以先按输入为常开开关信号来设计, 然后将梯形图中相应的输入继电器触点改成相反的即可,即常开改常闭、常闭改常开。 图 3-10 梯形图与指令助记符的对应关系

图 3-10

3.置位、复位指令

助记符	名称	功能	梯形图表示	可用软元件	程序步
SET	置位	动作保持,为 ON	H-SEY Y.	M. S	Y, M: 1
RST	复位	动作复位,为 OFF。且当 前值及触点复位	RST Y.	M. S, T. C. D	- S, 持M: 2 D, V, Z: 3

图 3-11

(1) SET 为置位指令,使动作保持; RST 为复位指令,使操作保持复位。SET 指令的操作目标元件为 Y、M、S。RST 指令的操作元件为 Y、M、S、D、V、Z、T、C,这两条指令是 1~3 个程序步。用路 RST 指令可以对定时器、计数器、数据寄存、变址寄存器的内容清零。

(2)置位和复位指令的功能是对操作元件进行强制操作。置位是把操作元件强制置"1",即ON; 而复位则是把操作元件强制置"0",即OFF,强制操作与操作元件的过去状态无关。SET 指令为置 位指令,强制操作元件置"1",并具有自保持功能,即驱动条件断开后,操作元件仍维持接通状态。 (3).RST 为复位指令,强制操作元件置"0",同样具有自保持功能。RST 指令除了可以对位元件 进行置"0"操作外,还可以对字元件进行清零操作,即把字元件数值变为0。RST 指令对定时器和 计数器进行复位操作时,除把当前值清零外,还把所有的常开触点、常闭触点进行复位操作〔恢复

原来状态〉。

(4).对于同一操作元件可以多次使用 SET, RST 指令。顺序可任意,但以最后执行的一条指令为 有效。

4.运算取反指令

助记符	名称	功能	梯形图表示 可用软元件	程 序 步
INV	取反	运算结果取反	INV 无軟元件	1

图 3-12

INV 指令在梯形图中用一条 45 度的短斜线表示,无操作数。INV 指令的功能是将指令之前的逻辑运结果取反。INV 指令除不能直接与左母线相连之外,可以在任意地方出现。但必须注意,它仅是把所在逻辑行的指令之前的逻辑运算取反。编程示例:图(3-13)所示为含有 INV 指令的梯形图。

图 3-13

图表 3-14 为 X0, X1, X2 不同情况下输出 Y0 的执行结果。

X0	XI	X2	INV1	INV2	INV3	Y0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	1	0	1	1	0	0
0	1	1	1	0	0	0
1	0	0	1	1	0	0
1	0	1	1	0	0	0
1	1	0	0	1	0	0
1	1	1	0	0	1	1

5.空操作指令

助记符	名称	功能	梯形图表示 可用软元件	程序步
NOP	空操作	无动作	无	1

图 3-15

(1) 空操作指令无操作数,也无操作内容,CPU不执行指令仅占用一个程序步。

(2)执行程序全部清除操作后,全部指令变为 NOP (空操作)。

(3) 在程序中事先插入 NOP 指令,将来在修改或增加指令时,可使程序的步序号的编号变化减至 最低。

3.5.1.2 操作及逻辑处理指令

1、微分输出指令

助记	符名称	功能	梯形图表示 可用软元件	程序步
PLS	上升沿脉冲	上升沿微分输出	PLS Y, M 除特殊 M外	1
PLF	下降沿脉冲	下降沿微分输出	PLF Y, M 除特殊 M外	1

图 1-16

(1).PLS 指令指在驱动条件成立时,在输入信号的上升沿使输出继电器接通一个扫描周期时间。 PLF 指令指在驱动条件成立时,在输出信号的下降沿使输出继电器接通一个扫描周期时间。

PLS 指令在输入信号接通后的一个扫描周期,而 PLF 则是在输入信号断开后接通一个扫描周期, 如图 3-17 所示。

图 3-17

2、脉冲边沿检测指令

57

助i	己符 名称	功能	梯形图表示 可用软元件	程序步
LDP	取上升沿检出	常开触点上升沿检出运算开始		2
LDF	取下降沿检出	常开触点下降沿检出运算开始		2
ANDP	串接上升沿检出	常开触点上升沿检出串接连接		2
ANDF	串接下降沿检出	常开触点下降沿检出串接连接		2
ORP	并接上升沿检出	常开触点上升沿检出并接连接	Х. Ү. М S, Т, С	2
ORF	并接下降沿检出	常开触点下降沿检出并接连接		2

图 3-18

PLS、PLF 指令也是脉冲边沿检测指令,但是编程元件仅限于 Y 和 M。对功能指令应用很不方便,也增加程序的容量。脉冲边沿检测指令则补充了这个不足。

(1) 在梯形图中表示

在梯形图中,脉冲边沿检测指令如图 3-19;

(2) 指令功能与使用

LDP、ANDP、ORP 为脉冲上升沿检测指令。在驱动信号的上升沿使输出元件或功能操作仅接通一个扫描周期。LDP、ANDP、ORP 为脉冲下降沿检测指令。在驱动信号的下降沿使输出元件或功能操作仅接通一个扫描周期。

图 3-20 所示为脉冲边沿检测指令的梯形图及其时序图。

图 3-20

图 3-21 中的两个程序图程序的执行功能是完全一样的,所以,在实际应用中,一般都用脉冲边沿检测指令代替微分输出指令。

图 3-21

3.电路块指令

助讠	己符 名称	功能	梯形图表示 可用软元件	程序步
ORB	并接电路块	串联电路块的并接	天教元件	1
ANB	串接电路块	并联电路块的串接		1 .

当梯形图中触点的串、并联关系稍微复杂一些时,用前面所讲的取指令和触点串并联指令就不 能准确地、唯一地写出指令语句表程序。例如,图 3-23 所示两种梯形图,就不能够用上述指令来写

出指令语句表程序。

59

图 3-23

电路块指令就是为解决这个问题而设置的。电路块指令有两个:并接电路块指令 ORB 和串接电路块指令 ANB。

什么叫做电路块?电路块是指当梯形图的梯级出现了分支.而且分支中出现了多于一个触点相 串联和并联的情况,把这个相串联或相并联的支路称为电路块。两个或两个以上触点相串联的称为 串联电路块,两个或两个以卜触点相并联的电路称为并联电路块。如表中用椭圆圈所表示的电路块。 指令功能与使用

(1) 编程规则:并联电路块与其他电路串联时,电路块起点用取指令 LD\LDI,电路块结束用 ANB 指令。

(2) 编程规则:串联电路块与其他电路并联时,分支开始用取指令LD\LDI,分支结束用 ORB 指令。

(3) 编程规则:凡初始支路或初始电路块均无须结束时使用 ORB 或 ANB

(4) 编程规则:凡单个触点与其他电路相串联、并联时,均直接应用触点串并联指令 ANB 、ANI、 ORB,而不再添加电路块指令 ORB, ANB。

(5) ORB 指令和八指令可反复使用,但重复使用次数应在 8 次以下。

4. 堆栈指令

助记符	名称	功能	梯形图表示 可用软元件	程序步
MPS	进栈	进入堆栈		1
MRD	读栈	读栈顶数		1
МРР	出栈	弹出堆栈	MRD MPP	1

堆栈指令又称多输出指令。当梯形图中,一个梯级有一个公共触点,并从该公共触点分出两条 或两条以上支路且每个支路都有自己的触点及输出时,必须用堆找指令来编写指令语句表程序。图 3-25 所示为一层堆栈的梯形图程序。图中,已经标出了堆栈指令的使用之处(类似电路块指令用法 理解)。

由图 3-25 中可以看出, MPS 指令用于分支的起点, MRD 指令炤于分支的中间段, MPP 指令用于分支的结束处。每一个分支都相对应于一个梯级的输出。堆栈指令从 MPS 和 MPP, 必须成对出现,也就是有进栈,就必须有出栈,最后堆栈中是空的。当支路中又出现支路时,可以反复使用堆 栈指令 MPS、MPP 这就出现了多层堆栈。

电路块指令 ORB、ANB 和堆栈指令 MPS、MPR、MPP 均为不带操作数的指令。

5.主控指令

助记符	名 称	功能	梯形图表示 可用软元件	程序步
MC	主控	公共串联触点开始		3
MCR	主控复位	公共串联触点结束		2

图 3-26

先看如图 3-27 所示的一段梯形图程序。

科技改变世界 学习成就未来

图 3-27

触点 M10 相当于其后电路块(虚线所画)的总开关, M10 闭合, 电路块中各个程序段得到执行: 如果 M10 断开,则跳过电路块程序段,直接转入电路块后面的程序行执行。像这样的程序.当然也可 以用前面所讲的堆栈指令来完成,但是却多占用很多存储元件。而使用主控指令可以使程序得到简 化。

1.指令功能和使用

(1) MCN 为主控指令开始,又称公共触点串联的连接指令。

(2) MCR N 为主控复位指令,又名公共触点串联的清除指令。表示主控电路块的结束。

(3) 主控指令 MC N 与主控复位指令 MCR N 必须成对出现, 其 N 值相同。

主控指令的功能可以用图 3-28 示意说明。

图 3-28

与图 3-27 比较,图 3-28 中多了主控指令 MC N0 和主控复位指令 MCR N0 主控指令的功能:当 其驱动条件成立时(M10 闭合)、执行 MC 到 MCR 之间的指令;当 M10 断开时,则不执 MC 到 MCR 之间的指令,这时主控电路块中的编程元件做如下处理:

(1) 非积算定时器,用 OUT 指令输出的编程元件均复位。

(2)积算定时器、计数器,用 SET,RST 指令输出的编程元件保持当前状态。在指令语句农程 序编制上,要把电路块中公共连线也当做一条母线,称为子母线。凡与子母线相连的触点必须用取 指令(LD,LDI)连接。而在执行 MCR 指令后,其后面的取指令又与主母线相连。当然,在编程软 件这些取指令的安排都是由编译程序内自动完成的。

◎ 3.5.2 定时器与时间继电器

3.5.2.1 定时器

在 PLC 中,软元件定时器就相当于继电控制系统中的时间继电器。每个定时器有一个设定定时时间的寄存器(16 位),一个对标准时钟脉冲进行计数的当前值计数器(16 位),以及一个用来存储 其输出触点的映像寄存器(1 位),这三个量使用同一地址编号。

定时器的工作原理如图(3-29)

图 3-29 时间继电器触点动作时序图

图 3-30 定时器的工作原理图

X1 为定时器的驱动条件,当 X1 接通时定时器从 0 开始对 100ms 的时钟脉冲开始计数,如果计数的数值与定时时间设定的值相同时,则定时器的常开、常闭触点动作。和时间继电器相比,它们

科技改变世界 学习成就未来

63

深圳普中科技 PLC 学习机

有相同和不同之处。相同之处是它们都有驱动条件,都有触点延时动作的功能,当驱动条件断开时 或发生停电时,都自动进行复位操作,时间继电器回归原样,而定时器的计数值变为0。不同之处 则是时间继电器的触点有瞬时、通电延时和断电延时三种之多,而定时器只有通电延时触点;时间 继电器的触点仅有几对,且它们是并行工作的;而定时器的触点有无数个,可任意取用,而且每个 触点都是按照扫描周期工作原理进行动作的。

图 3-31 所示为定时器在梯形图中的表示及其触点动作的时序图,在梯形图中,定时器按照继 电器线图来处理的。

图 3-31 定时器触点动作时序图

对于定时器,重点关心的是它的驱动、定时时间和复位方式、把它称为定时器的二要素。驱动 是指定时器线圈开始工作的时刻,定时时间则是从线圈工作到其相应触点动作的延时时间,而复位 则是指定时器线圈断开的时刻。掌握定时器二.要素对分析时序控制是大有帮助的。

本学习机的定时器范围和定时器的特性已经在前面表格中列出,如需详细了解,请查看表格,在此不在复述。

3.5.2.2 定时器的使用

一般带有定时器控制的程序称为时序控制,而时序图则足分析和设计时序控制梯形图程序的强 有力的工具。下面,通过介绍一些定时器常用控制程序来加深对定时器三要索和时序图的理解与提 高其应用能力。

瞬时动作触点

PLC 的定时器仅仅是一个通电延时的时间继电器,它不带有瞬时触点和断电延时触点,但是可以通过程序来获得。

如果需要与定时器线圈同时动作的瞬动触点,可以在定时器两端并联一个辅助继电器 M,它的 触点为定时器的瞬动触点,但一般情况下,则都设计成如图 3-32 所示程序,同样,辅助继电器似 M0 的触点为定时器 T2 的瞬动触点。

图 3-32 定时器瞬时动作触点梯形图

2.断电延时断开

图 3-33 所示为完成断电延时断开功能的梯形图,当 XI 接通时,M0 接通,Y0 接通,而当 X2 接通(断电)虽然 M0 断开,但 Y0 通过其自身触点 Y0 仍然闭合,同时定时器 T1 开始工作,到达定时时间 2 秒后,常闭触点 T1 断开使 Y0 断开,达到了延时断开的目的。

图 3-33 断电延时断开功能梯形图

3.通电延时接通,断电延时断开控制

图 3-34 所示为一个电动机控制程序,要求按下启动按钮 X1,5 秒后电动机才启动,按下停止 按钮 X2,3 秒后电动机才停止。

图 3-34 通电延时接通、断电延时断电控制梯形图

4、可改变定时时间的控制

这是一个通过输入接口 X10-X17 的开关信号来改变定时器 T0 的定时时间的控制程序,如图 3-35 所示。

图 3-35 可改变定时时间的控制功能梯形图

K2X10 是组合位元件,根据 X17-X10 的开关铽信号组成一组 8 位二进制数,凡闭合为 1,断开 为 0,而指令 MOV K2X10 D10 的功能是把 X17-X10,所组成的 8 位二进制数送到 D10 存储起来, D10 又是定时器 T0 的设定值。这样通过调节 X17-X10 的开关量输入达到调节定时时间的目的,在 没有触摸屏的情况下,这是一种比较好的定时时间调试于段。

5.长时间延时控制

本 PLC 定时器最长定时时间为 32 7675,如果需要更长的定时时间,可以采用多个定时器组合的方法来获得较长的延时时间,这种方法又称为定时接力。

图 3-36 所示为三个定时器接力的长时间延时控制程序,当 X1 闭合,T1 得电并开始延时(3 000 秒)延时达到 3 000 秒后,其常开触点闭合又使 T2 得电延时(3000 秒),同样又延时 3 000 秒后 T3 得电,T3 延迟 1200S 后,其常开触点闭合才使 Y1 闭合,因此,从 X1 闭合到 Y1 闭合总共延时 3 000+3 000+1 200=7 200 秒=120 分钟 =2 小时。

图 3-36 长时间延时控制功能梯形图

6、振荡电路

振荡电路又称闪烁电路,是种被广泛应用的实用控制电路,它可以控制灯光的闪烁频率,也可以控制灯光的通断时间比(也就是占空比),这里介绍的是基本控制程序,如果与计数器配合,还可以做到闪烁几次后自动停止。图 3-37 所示为振荡电路控制功能梯形图。

图 3-37 振荡电路控制功能梯形图

振荡电路实际上是一个 T0 和 T1 互相控制的反馈电路。开始时, T0 和 T1 均处于断开,当 X1 启动后, T0 闭合,经过 2 秒后,其常开触点 T0 闭合使 T1 断开。经过 1 秒后,T1 的常闭触点动断 使 T0 复位,其常开触点 T0 使 T1 断开,T1 的常闭触点使 T0 再次闭合,如此反复,直到按下 X2 停止为止,时序图如图 3-38 所示。

图 3-38 振荡电路时序图

◎ 3.5.3 计数器

3.5.3.1 计数器的功能

和定时器一样,软元件计数器也用十进制编号,在程序中也作为输出线圈处理。但计数器的复位必须有 RST 指令完成。

图 3-39 所示为 PLC 计数器的应用梯形图及时序图。

在梯形图中,X0为计数器C0的复位信号,当X10闭合时,其上升沿使计数器复位归零。计数器在应用时,要求在计数前都要先清零,因为如果不清零,则其残留计数值不会自动去除,必然会影响到计数。计数器C0 K10的K10为预置值,计数器的预置值可以用十进制数K来表示,也可以用数据寄存器D0间接表示。X11为计数器的计数对象,X11每闭合断开一次,其上升沿使计数器的当前值加1。当计数值等于预置值时,在第10个脉冲上升沿,其常开触点C0闭合,使Y0得到驱动闭合。如果此后不对C0进行复位,则计数器的当前值永远保持为预置值,相应的触点也保持动作状态,直到下一个复位信号到来,计数器的当前计数值和相应触点才复归为0和恢复原态。

3.5.3.2 计数器的使用

内部信号计数器由于其输入信号频率较低, 一般多用来进行统计计数, 比较简单。厂面 举几个例子给予说明。

1.单按钮控制电动机启停,如图 3-40

图 3-40 单按钮控制电动机的启/停梯形图

2.循环计数器

循环计数器的含义是当计数器达到预置设定值后,其触点闭合,给出一个输出控制信号,在下 一个扫描周期里,利用本身的触点给计数器复位,计数器又重新开始计数,如此循环,每到设定值 给出一个输出控制信号,程序梯形图如图 3-41 所示。

图 3-39 计数器的应用梯形图及时序图

图 3-41

3.定时器一计数器长时间延时

图 3-42 所示是利用定时器和计数器相结合办法来获得同样长延时时间控制的梯形图程序。

图 3-42 定时器一计数器长时间延时梯形图

图 3-42 中,当 T1 的时间延时 60 秒到,它的常开触点,使计数器计数一次。而常闭触点动断后, 使他自己复位,复位后,T1 的当前值为 0,其常闭触点又闭合,使 T1 又重新开始计时,每一次延时 计数器尜加一次,直到累加到 120 后,才使 Y0 闭合。则整个延时时间为 T=1000 毫秒 x600x120=7 200 秒=2 小时。

◎ 3.6 传送指令

70

3.6.1 MOV 传送指令

MOV 指令的源操作数可以取的数据类型是 WX、WY、WM、WS、T、C、D 和 K。它的目标 操作数可以取 WY、WM、WS 和 D。

X1为ON时常数100被传送到D10,并自动转换为二进制数。

X2 为 ON 时 WX0 的状态被送到 WM0。

M40 为 ON 时 WM10 的值被送到 WY40。

X3 为 ON 时 TO 的值被送到 WY50。

3.6.2. FMOV 多点传送指令

操作数 :S:数据的来源 D:目的地装置的起始 n:传送区块长度执行结果:S的内容被传送至 D所指定的装置起始号码开始算 n 个寄存器当中。FMOV 应用举例:当 X20=ON 时,K10 被传送到由 D10 开始的连续 5 个寄存器(D10~D14)中。

3.6.3 BMOV 全部传送

操作数 :S: 来源装置起始 D: 目的地装置的起始 n: 传送区块长度指令说明: 此指令用于 传送多笔数据到新的寄存器。S 所指定的装置起始号码开始算 n 个寄存器的内容被 传送至 D 所指 定的装置起始号码开始算 n 个寄存器当中。 BMOV 应用举例: 当 X20=ON, D0~D3 的内容被传 送到 D20~D23 中。

◎3.7 顺控指令

72

3.7.1 STL 流程开始指令, RET 流程结束指令

STL 指令;步进梯形指令 STL Sn 构成一个步进点,当 STL 指令出现在程序中,代表程序进入以步进流程控制的步进梯形图状态。在 STL 步进母线后面,执行 SET Sn 时,为打开指定流程,自动关闭当前所在的流程步。

在流程 S0 中, SET S20 将所在的流程 S0 关闭,并将流程 S20 打开。 流程从 ON 变为 OFF 时将流程所属的 OUT、PLS、PLF、计定时器等 OFF 或复位。

◎ 3.8 移位指令

3.8.1 SFTL 位左移指令

源操作数可以取 M 和 S。目标操作数可以取 K (K0~K99)

图中的 X0 由 OFF 变为 ON 时,位左移指令按以下顺序移动: M16 中的数溢出, M16←M15, M15 ←M14, M14←M13, M13←M12, M12←M11, M11←M10, M10←M9, M9←M8, M8←M7, M7
←M6, M6←M5, M5←M4, M4←M3, M3←M2, M2←M1, M1←M0, M0←0。

图中的 X1 由 ON 变为 OFF 时,位右移指令按以下顺序移动: M4 中的数溢出, M5→M4, M6 →M5, M7→M6, M8→M7。

◎ 3.9.脉冲输出指令

3.9.1 PLSR 带加减速的定量脉冲输出指令

PLSR 带加减速的定量脉冲输出指令;可以在程序中反复使用,但是在设定驱动指令的时间时, 请注意不要同一时间驱动同一输出通道 (K0..K2)。带加速减速功能的定尺寸传送用的脉冲输出指 令;针对指定的最高频率进行加速,在达到所指定的输出脉冲数前自动进行减速;脉冲范围: 0~4294967295

 脉冲数
 速度
 加减速时间
 通道

 [PLSR D308 D312 D315 K1]
 1

 指令被占用的寄存器 D310 D311(已发送的脉冲数)

http:// www.prechin.com

75

图中当 M2002=Off→On 时常数 K120000 被传送到 D308 D309,并自动转换为二进制数。 图中当 M301"ON"时,脉冲输出通道 K1/Y21 将 D308 D309 的脉冲数按 D312 D313 指定频率,输出,D314 为初始频率,D315 为该通道的加减速时间控制。如果指定的脉冲数(D308 D309)数值为零则指令将连续输出,指令参数: PLSR [(S1)(S2)(S3)(D)],S1+0,S1+1 为 32 位目标脉冲数;S1+2,S1+3 为 32 位已发送脉冲数;S2+0,S2+1 为 32 位目标频率; S2+2 为初始频率;S3 为加减速时间;加减速时间是指从初始到目标最高频率的加速时间,同时也定义了频率与时间的斜率,后面的减速也按这个斜率来执行。设置范围: 65535ms以下;D 脉冲输出通道编号;

■ PLSR 指令通道分配表

适用机型	Pz-32MT-2PG		Pz-20MR-2PG、Pz-36MT-3PG			
通道号	KO	K1		KO	K1	K2
最高频率	10000Hz	10000Hz		100000Hz	100000Hz	100000Hz
输出端口	Y20	Y21		Y20	Y21	¥22

3.9.2 PLSF 带加减速的可变频率定量脉冲输出指令

PLSF 带加减速的可变频率定量脉冲输出指令;可以在程序中反复使用,但是在设定驱动指令的时间时,请注意不要同一时间驱动同一输出通道(K0..K2)。带加速减速功能的可变频率定尺寸传送用的脉冲输出指令;指令执行过程中可以实时改变目标频率进行加减速,在达到所指定的输出脉冲数前自动进行减速;脉冲范围:0~4294967295。

科技改变世界 学习成就未来

http://www.prechin.com

77

图中当 M300"ON"时,脉冲输出通道 K0/Y20 将 D300 D301 的脉冲数按 D304 D305 指定 频率输出,D306 为初始频率,D307 为该通道的加减速时间控制。如果指定的脉冲数(D300 D301)数 值为零则指令将连续输出。支持运行中暂停,如果运行过程中指定的频率变为 0 时,脉冲暂停输出,频率恢复大于 0 后,脉冲继续输出,适用于同步速度牵引,定尺寸传送控制场合。 指令参数:PLSF [(S1)(S2)(S3)(D)],S1+0,S1+1 为 32 位目标脉冲数; S1+2,S1+3 为 32 位已发送脉冲数; S2+0,S2+1 为 32 位目标频率; S2+2 为初始频率;S3 为加减速时间;加减速时间是指从开始到第一段最高频率的加速时间,同时也定义了所有段的频率与时间的斜率,从而后面的加减速都按照这个斜率来加速/减速。设置范围: 65535ms 以下;D 脉冲输出通道编号;

该指令执行后:		脉冲数	速度	加减速时间	通道号
执行	[PLSF	D300	D304	D307	K0]
指令被占用的寄存器	D302 D303(已发送的脉冲数)				

适用机型	Pz-32MT-2PG			Pz-20MR-2PG、Pz-36MT-3PG		
通道号	KO	K1		KO	K1	K2
最高频率	10000Hz	10000Hz		100000Hz	100000Hz	100000Hz
输出端口	¥20	Y21		Y20	Y21	Y22

3.9.3 PWM 脉宽调制指令

PWM 脉宽调制指令;可以在程序中反复使用,但是在设定驱动指令的时间时,请注意不要同一时间驱动同一输出通道 (Y00..Y17)。PWM 功能可轻易作出细致的温度控制、比率阀控制或外加简易之积分电路而做成便宜实用之 D/A 模拟输出;Y00-Y17 是大功率输出 8A 晶体管,所以可以直接驱动直流电机调速控制。图中当 M0 "ON"时,PWM 指定 Y12-Y17 各自按相应的占空比执行各自的脉宽输出。

3.9.4 SPD 脉冲频率检测指令

SPD 指令; 在 S2 指定的时间(单位 ms)内计算 S1 所指定的输入端所接收脉冲个数,结果 被存放在 D 所指定的寄存器。

图中当 M2000 "ON"时, SPD 指令在 1000ms(1 秒)内计算 X0 输入端所接收脉冲个数, 结果被存放在 D0 寄存器里面。

◎ 3.10 触点比较指令 LD>、LD<、LD=、LD<>、LD<=、LD>=

助记符	命令名称	助记符	命令名称
LD=	(S1)=(S2)时运算开始的触点接通	AND<>	(S1)<>(S11)时串联触点接通
LD>	(S1)>(S3)时运算开始的触点接通	AND<=	(S1)<=(S12)时串联触点接通
LD<	(S1)<(S4)时运算开始的触点接通	AND>=	(S1)>=(S13)时串联触点接通
LD<>	(S1)<>(S5)时运算开始的触点接通	OR=	(S1)=(S14)时并联触点接通
LD<=	(S1)<=(S6)时运算开始的触点接通	OR>	(S1)=(S15)时并联触点接通
LD>=	(S1)>=(S7)时运算开始的触点接通	OR<	(S1)<(S16)时并联触点接通
AND=	(S1)=(S8)时串联触点接通	OR<>	(S1)>(S17)时并联触点接通
AND>	(S1)>(S9)时串联触点接通	OR<=	(S1)<=(S18)时并联触点接通
AND<	(S1)<(S10)时串联触点接通	OR>=	(S1)>=(S19)时并联触点接通

触点型比较指令相当于一个触点,执行时比较源操作数[S1]、[S2],满足比较条件则触点闭合, 源操作数可以取 K 和 D。以 LD 开始的触点型比较指令接在左侧母线上,以 AND 开始的触点型比较

深圳普中科技 PLC 学习机

科技改变世界 学习成就未来

指令相当于串联触点,以OR开始的触点型比较指令相当于并联触点。各种触点型比较指令的助记符和意义如下表所示。例图中 D10 的当前值等于 20 时,Y50 被驱动,D200 的值大于 30 且 X0 为 ON 时,Y51 被 SET 指令置位。X10 为 ON 且 D100=58 时 Y51 被置位。M27 为 ON 或 D20 的值等于 146 时,M50 的线圈通电。

◎ 3.11 数据运算指令

数学运算指令(16bit 字)

数学运算指令包括 ADD、SUB、MUL、DIV、INC、DEC(二进制加、减、乘、除)指令,源操作数可以取 K 和 D,目标操作数可以取 D; INC、DEC 指令,操作数可以取 D、V、Z 。

1、 加法指令

ADD 将源操作数中的二进制数相加,结果送到指定的目标元件。例图中的 X0 为 ON 时,执行 (D10) + (D12) → (D14) 。

2、 减法指令

SUB 将[S1]指定的元件中的数减去[S2]指定的元件中的数,结果送到[D]指定的目标元件。例图的 X1 由 OFF 变为 ON 时,执行(D1000) — (D102) → (D110)

3、 乘法指令

MUL 将源文件中的二进制数相乘,结果送到指定的目标元件。例图中 X2 为 ON 时,执行(D1000)

科技改变世界 学习成就未来

x (D1002) → (D1005、D1004), 乘积的低位送到 D1004, 高位送到 D1005。

4、 除法指令

DIV 用[S1]除以[S2], 商送到目标文件,余数送到[D]的下一个元件。例图中的 X3 为 ON 时,执行 32 位的除法运算,(D206)/(D208),商送到(D210)余数送到(D211)。

5、加1指令

INC 例图中的 X10 每"ON"一次, (D1000)+1 → (D1000)

6、减1指令

DEC 例图中的 X11 每"ON"一次, (D1000)-1 → (D1000)

第四章 应用实例

◎4.1 交通红绿灯应用:

控制要求:接通启动按钮两侧黄灯亮起,5秒后灭,同时乙道绿灯亮甲道红灯亮,乙道通行, 甲道禁行,15秒后绿、红灯灭,同时两侧黄灯亮,5秒后黄灯灭,同时乙道红灯亮甲道绿灯亮,乙 道禁行甲道通行,15秒后,红、绿灯灭,同时两侧黄灯亮,如此循环工作。

在安装了编程软件并且确定已安装好下载数据线 USB 接口驱动的前提条件下,将一端插入电脑的 USB 口另一端与 PLC 下载口连接,

然后点击快捷工具栏上的图标 並或者打开 PLC 菜单选择下载项进行下载,如果端口设置正确就可 以顺利将程序下载到 PLC 中,如出现以下图标 编译进行中

如果通信端口设置不正确则会出现以下图标:

下载数据完成后,打开软件监控,这时可以看见编程窗口左下角出现一个闪动的指示灯,表示正处 于监控状态。

深圳普中科技 PLC 学习机

对照梯形图中的 X0 软元件,从 PLC 的 GND 端子引一根线与 X0 接通,可以看见显示器内 X0 软元件由黑色变为绿色(在这儿我们将程序显示设置为黑色的,监控设置显示为绿色的)表示输入 信号 X0 已经接通(我们也可以一边用导线接触 X0 输入端口,一边查看学习机输入端的 X0 指示灯 是否亮起),这时软元件中间继电器 M0、顺序控制初始软元件 S0 被置位,处于接通状态,这时可以 看见学习机的 Y1、Y5 输出口的指示灯亮起,同时对应右侧的交通红绿灯显示面板的黄灯亮起,同 时可以从监控里看见 T0 计时器的计时值在跳动,计时器的设定值 K50 (表示时间为 5 秒),T0 计时 器的单位为 0.1 秒,50×0.5=5 秒,5 秒时间到则黄灯灭,同时甲道红灯与乙道绿灯同时亮起,(表示 交叉的两条路中的其中一条路放行,另一条路则不放行),为何黄灯会灭?这里使用了顺控指令 STLS0、STLS20、STLS21、STLS22,顺控指令的特点就是当转移到下一步则上一步自动关闭,下 一步自动接通,在同一时间内只有其中的一步处于接通状态,其他步都处于断开状态,因此在顺控 指令中允许双线圈存在(注意:双线圈必须不在同一时刻接通),因为它们不会同时接通,在不相邻 程序步间允许使用相同编号的计时器,这与普通的指令使用不同。

这时可以看见 Y0、Y4 处于接通状态,即甲道红灯与乙道绿灯同时亮起,同时 T1 计时器开始计 算,当 T1 计时器数值达到设定值 K150 时,Y0、Y4 断开,同时 S21 置位接通 Y1、Y5 重新接通, 黄灯亮起,T2 计时器开始计时,计时时间 5 秒到则黄灯关闭,Y1、Y5 断开,同时 S22 置位接通, Y2、Y6 接通,即甲道放行乙道禁止放行,同时 T2 时间继电器开始计时,计时时间 15 秒到则 Y2、 Y6 断开,S0 置位接通,Y1、Y5 重新接通,黄灯再次亮起,就这样不段的循环,就是我们经常要接 触的交通红绿灯了。程序中 RET 为顺序控制指令专用的结束符号。

如果需要交通灯停止则接通 X1,所有灯熄灭。要再次启动需再接通 X0 即可。当然这个交通红 绿灯的启动与停止可以通过编程的其它软元件将其设为自动定时开启和关闭的,这样到一定时间就 关闭或开启,在这里就不在复述。

◎ 4.2 声控灯

控制要求:,当声音足够强时,灯自动点亮延时15秒后自动熄灭。

操作方法,下载程序方式与例1相同,在此不在复述,声音传感器分为2线、3线、或多线等, 这里只讲解2线和3线的接线方式。两线传感器接线,一端接在输入端GND上,另一端接X0上即 可,三线制的则要求使用NPN型的传感器,正极接在PLC电源端+24V上,负极接在GND上,信 号线接在X0端子上;输出端接一个DC24V的小灯,一端接Y0输出口端子上,另一端接在电源+24V 上

图 4-6

工作过程解说:

声音传感器提供信号 X0 输入给电路。如果某个活动被检测到,程序输入 X0 变为 1,接着安全 灯 Y0 在 X0 驱动下变为 1 并自锁,安全灯会持续 15 秒,通过锁定灯输出 Y0 来实现,但是接着用一 个来自定时器 T0 的触点关断锁定。因为定时器与灯线圈同时起动,这样可保证灯保持开状态 15 秒。 计时结束时,定时器的常闭触点断开,因而切断锁定电路。

◎ 4.3 互锁应用

控制要求: 两个电机工作时,不允许同时接通,因此为了防止同时接通,所以采用互锁。

操做方法:按照例1的接线方式即可操作查看运行情况。

工作过程解说:

当电机 2 不工作的时候,打开开关 1 信号接通,这时 Y0 接通,电机 1 开始工作,这时即使开关 2 处于打开状态,Y1 也不输出,电机 2 不工作,只有当电机 1 停止后,方可启动电机 2。当电机 2 在工作的时候,即使开关 1 处于接通状态,电机 1 也不工作,处于锁定状态,只有当电机 2 停止工作电机 1 才可以启动。

◎ 4.4 顺序启动灯

控制要求:用单个开关按顺序启动三个灯,打开顺序启动灯程序,对照程序进行操作。要求:按下启动按钮,灯泡1立即启动、延时10秒后灯泡2启动,又延时5秒后灯泡3启动:按下停止按钮,所有灯泡灭。

操作方法: 按照例一配线即可查看通断情况。

工作过程解说:

按钮 X0 接通, Y0 接通并自保, T0 立即启动开始计时,当到达 10 秒的预设时间后, T0 接通 Y1 接通 Y0 立即断开; Y1 接通的同时 T1 开始计时,计时时间 5 秒到, T1 接通, Y2 接通 Y1 断开, 任意环节手动按下 X1 则所有灯灭。

◎ 4.5 自动冲水系统

控制要求: 男卫生间小使斗处, 使用者必须站满 3 秒才会执行冲水动作, 冲水 3 秒后自动停止冲水。使用者离开时, 再冲水 4 抄后自动停止冲水。操作方法略...

若使用者在第一次的冲水时间段内离开,则立即停止第一次冲水,开始第二次4秒的冲水。

若前一个冲水4秒还未完成,后一个使用者到来,则立即停止冲水,并且不执行第一次冲水3 秒的动作,只在该使用者离开时执行第二次4秒冲水动作。

http:// www.prechin.com

工作过程解说:

X0 红外线传感器,当有物体进入到红外线检测区域内则 X0 接通,T0 三秒钟计时,T1 三秒钟 计时,T2 四秒钟计时,Y0 冲水电动阀门。

当检渕到到有人进入时.红外线传感器 X0 接通, T0 受电开始计时, 若在 3 秒内人离开(X0 断开), 则 T0 失电.不执行任何动作。若人站满 3 秒, 則 T0 的常开接点闭合,保持 M0 接通,开始第一次冲水 Y0 接通。

程序中,M1形成了个自保电路。当便使用者站立时超过3杪才离开(常开接点M0接通、常闭接点X0接通)时,M1保持为接通开始第二次冲水Y0接通,直到冲水4秒后(T2的常开接点闭合,常闭接点断开),停止冲水(Y0断开),M0、M1被复位。由于M1的自保,不论其间X0是否发生状态的改变,都会顺利完成第二次冲水动作。

4.6 液体混合自动控制系统

控制要求:

按下启动按钮后,自动按顺序向容器注入A、B两种液体,到达规定的注入比例后,由搅拌机 对混合液体进行搅拌,搅拌均匀后打开阀门让混合液体从流出口流出。操作方法略...

科技改变世界 学习成就未来

深圳普中科技 PLC 学习机

图 4-11

工作过程解说:

按下启动按钮,X0接通Y0接通并自保,阀门打开注入液体A,直到碰到低液位浮标传感器后停止液体A注入。碰到低水位浮标传感器后,由X1接通动作,Y1接通并自保,直到碰到高水位浮标传感器后停止液体B注入。

碰到低水位浮标传感器后, X2 接通, Y3 接通, 搅拌电机开始工作, 同时定时器 T0 开始计时,

科技改变世界 学习成就未来

深圳普中科技 PLC 学习机

60 秒后, T0 接通, Y3 被关断,搅拌电机停止工作,Y2 接通并自保,混合液体开始流出。Y2 接通门后,定时器 T1 开始计时,到达预设值 120 秒后,T1 接通,Y2 被关断,混合液体停止流出。

当系统出现故障时,按下急停按钮,X4接通,其常闭接点关断,所有输出均被关断,系统停止工作。

4.7 自动喷泉

控制要求:

按下喷泉启动开关后,喷泉工作指示灯一直保持亮的状态。在喷泉工作指示灯亮2秒后,循环 执行下面动作:中央喷水灯→中央喷水阀→环状灯→环状喷水阀每个动作持续时间为2秒。操作方 法略...

http://www.prechin.com

图 4-13

工作过程解说:

当按下启动开关时,X0接通,Y0线圈导通,工作指示灯点亮。利用Y0接通作为第一个定时器 T0执行的条件,2秒定时时间到达后,T0接通,[SET YI]指令执行,Y1接通门,中央喷水灯打开。 因工作指示灯工作过程中一直为亮,所以在T0接通时,只置位Y1,而不去做复位Y0。

同样,用Y1接通为第二个定时器指令T1执行的条件,用Y2导通作为第三个定时器指令T2 执行的条件,用Y3导通作为第四个定时器指令T3执行的条件,保证Y1~Y4的顺序动作。中央喷 水灯、喷水阀、环状喷水灯、环状喷水阀宙需顺序动作,所以在T1、T2、T3接通过程中,置位下 次动作的同时,还需复位本次动作,用Y1、Y2、Y3、Y4的常闭接点来关断定时器,确保本次动作 执行时,其前一个动作的定时器被关闭。

最后一个动作完成后,T4的上升沿复位本次动作后,同时去置位第一个动作Y1,开始第二轮

的循环。X0断开,Y0工作指示灯熄火,同时复位指令执行,Y1、Y2、Y3、Y4被复位,所有的阀门、喷水池灯立即停止工作。

◎ 4.8 步进电机转速控制

控制要求:步进电机在一定转速下,每按动加速按钮电动机的转速逐渐增大,按动减速按钮, 电动机的转速逐渐减低

图 4-14

工作过程解说:

当上电的时候 M2002 开机脉冲接通一个扫描周期,将默认设定脉冲数值传入 D312 存贮器中, 默认最终 200HZ 脉冲频率值传入 D316,初始脉冲频率 100HZ 传入 D318,默认加减速时间 0.5 秒传 入 D320,默认加加速幅度值 10 传入 D322。当 X2 接通则 M0 接通并自保持,这时驱动 PLSF 指令, Y20 口按照默认设定值输出脉冲驱动步进电机运转,当输出脉冲数存储器 D314 内数据与设定值 D312 内数据相等时,比较支路接通 M3 同时接通,M3 接通则 M0 断开,同时 D314 被清零,PLSF 指令失 电,Y20 口停止脉冲输出。X4 为控制电机旋转方向的输入信号,当 X4 接通则 Y7 接通,当 X4 断开 则 Y7 断开,Y7 接通与断开时电机将改变旋转方向。

当电机运转时,X0每接通一次则D316的值就增大D322内存的值,D316的值增大,电机的运转频率增大,电机的运转速度随之增大。同理当X1每接通一次则D316的值就减小D322内存的值,D316的值减小,电机的运转频率减小,电机的速度随之减小。

注意: 电机的频率不要调的过高或者过低, 过高过低都会导致电机不转。